Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.2, 189-195, 1998
QCA와 AFM을 이용한 폴리피롤 중합막에 대한 음이온의 영향 분석
Analysis of the Effects of Anion on the Characteristics of Polypyrrole Films by Using QCA and AFM
본 실험에서는 수정진동자의 한쪽 전극을 작용전극으로 사용하여 Na+ 공통 양이온에 음이온을 Cl-, ClO4-, NO3-, DS-로 변화시킨 전해질용액에서 피롤 단량체를 전기중합시키면서, 피롤막이 수정진동자 표면위에 전기중합될 때의 공진주파수와 공진저항을 측정하여 폴리피롤 중합막의 특성변화를 분석하였고, 이 결과를 Atomic Force Microscope(AFM) 사진과 비교 검토하였다. 고리고 폴리피롤 중합막이 피막된 수정진동자를 NaClO4 전해질 용액에 넣어 전위주사를 하여 전위주사에 따른 폴리피롤 박막의 동특성 변화도 분석하였다. 본 실험결과, 상대적으로 이온크기가 큰 음이온을 전해질로 사용하였을 경우, 중합된 폴리피롤 박막속으로 음이온과 전해질용액이 침투함에 따라 폴리피롤 박막이 탄성막에서 점차 점탄성막으로 변해감을 알 수 있었다.
In this work, the in-situ viscoelastic characteristics of electropolymerized polypyrrole(Ppy) thin film were investigated under various electrolyte solutions, NaCl, NaClO4, NaNO3, and NaDS using quartz crystal analyzer(QCA). An Ag/AgCl electrode was used as a reference electrode, and a Pt electrode was used as a counter electrode, and an aqueous solution of 0.1 M KClO4 was used as an electrolyte. One side electrode of quartz crystal was used as a working electrode coupled with specially fabricated QCA electrochemical cell. The resonant frequency and resistance diagram(F-R diagram) was used to interpret the results and compared with AFM photograph. The resonant frequency, resonant resistance, and current were measured when the cyclic voltammetry was performed using galvanostatically polymerized Ppy film coated ATcut quartz crystal electrode. As the size of an anion is larger, the viscoelastic change was more prominent due to the anion doping and electrolyte solution penetrating into the polypyrrole thin film.
[References]
  1. Chang SM, Kim YH, Muramatsu H, Chem. Ind. Technol., 14(5), 457, 1996
  2. Michael EGL, "Electroactive Polymer Electrochemistry," ed. E.G.L. Michael, Part 1, Plenum Press, New York, p. 3, 1994
  3. Sauerbrey G, Z. Phyzik, 155, 206, 1959
  4. Kanazawa KK, Gordon JG, Anal. Chim. Acta, 175, 99, 1985
  5. Muramatsu H, Tamiya E, Karube I, Anal. Chem., 60, 2142, 1988
  6. King WH, Anal. Chem., 36, 1735, 1964
  7. Hlavay J, Guibault GG, Anal. Chem., 36, 1735, 1964
  8. Nomura T, Nagamune T, Anal. Chim. Acta, 131, 97, 1981
  9. Shons H, Dorman F, Najarian J, J. Biomed. Mater. Res., 6, 565, 1972
  10. Muramatsu H, Dick JM, Tamiya E, Karube I, Anal. Chem., 59, 2760, 1987
  11. Itaya K, Ataka T, Toshima S, J. Am. Chem. Soc., 104, 4767, 1982
  12. Chang SM, Muramatsu H, Biological Eng. News, 2(1), 60, 1995
  13. Grabbe ES, Buck RP, Melroy OR, J. Electroanal. Chem., 59, 2760, 1987
  14. Bruckenstein S, Shay M, J. Electroanal. Chem., 280, 73, 1985
  15. Jones JL, Mjeure JP, Anal. Chem., 41, 484, 1969
  16. Muramatsu H, Suda M, Ataka T, Seki A, Tamiya E, Karube I, Sens. Actuators A-Phys., 21-23, 362, 1990
  17. Ye X, Muramatsu H, Kimura K, Sakuhara T, Ataka T, J. Electroanal. Chem., 314, 279, 1991
  18. Muramatsu H, Tamiya E, Karube I, Anal. Chim. Acta, 251, 135, 1991
  19. Muramatsu H, Ye X, Suda M, Sakuhara T, Ataka T, J. Electroanal. Chem., 322, 311, 1992
  20. Chang SM, Kim JM, Chang YK, J. Korean Sens. Soc., 5(4), 71, 1996
  21. Muramatsu H, Kimura K, Anal. Chem., 64, 2502, 1992
  22. Peres RCD, De Paoli Marco A, Synth. Met., 48, 259, 1992
  23. Takeshita K, Wernet W, Oyama N, J. Electrochem. Soc., 141(8), 2004, 1994