Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.1, 109-115, 1998
탈수소 촉매 반응의 향상을 위한 온도 주기 흡착 반응기
A Temperature Swing Adsorptive Reactor for the Enhancement of Catalytic Dehydrogenation Reaction
온도의 주기적 변화를 포함하는 temperature swing 원리를 적용하여 흡착과 반응이 동시에 일어나는 새로운 개념의 촉매 반응기에 대한 이론적 연구를 수행하였다. Temperature swing adsorptive reaction(TSAR) 공정의 중요한 운전 변수인 원료 및 재생 가스의 온도, 주기 시간 변화에 따른 반응기의 성능을 평가하기 위하여 반응기의 상세 모델링을 수립하고 동적 모사를 수행하였다. 본 연구에서 제시된 개념의 응용으로 methyl-cyclohexane(MCH)으로부터 톨루엔을 생산하는 탈 수소 촉매 반응을 선정하여 여러 조건에 대하여 동적 모사를 수행하여 전환율 및 에너지 소비율을 계산하였다. 또한 동일한 원료 및 운전 조건에서의 등온 평형 반응기의 전환율과 에너지 소비율을 계산하여 비교하였다. 연구 고찰된 전범위에서 제시된 TSAR 반응기가 등온 평형 반응기 보다 톨루엔의 전환율과 에너지 소비 측면에서 우수한 것으로 나타났다. 따라서 폐열을 반응열 공급에 사용하는 시스템이나 주기적인 촉매 재생, 전환율 향상을 위한 최적 온도의 생성, 열역학적으로 제한이 있는 반응의 향상을 위하여 TSAR공정을 효과적으로 적용할 수 있다.
Based on temperature swing concept arising from forced periodic variations in feed conditions, a theoretical study of a novel catalytic reactor system is carried out, in which adsorption and reaction occur simultaneously. In order to evaluate the performance of a temperature swing adsorptive reaction(TSAR) process for various operating conditions, the rigorous dynamic model of the reactor is developed and dynamic simulation is performed. In the application of the concept suggested in this paper, the dehydrogenation process of methyl-cyclohexane(MCH) to produce toluene is employed and the conversion and energy consumption is calculated. The results are compared with the case of isothermal equilibrium reaction. For the whole range of investigation, it is examined TSAR process is superior to an isothermal equilibrium reactor in the sense of a convection and energy saving. In the consideration of the results of this study, TSAR process can provide a means for the effective utilization of a waste heat source for reaction heat and for feed gas preheat; periodic catalyst regeneration; the generation of optimal temperature for the improvement of a conversion; and reaction enhancement for theoretically limited reactions.
[References]
  1. Heggs PJ, Abdullah N, Chem. Eng. Res. Des., 64, 258, 1986
  2. Eigenberger G, Nieken U, Chem. Eng. Sci., 43, 2109, 1988
  3. Rehacek J, Kubicek M, Marek M, Chem. Eng. Sci., 47, 2897, 1992
  4. Lu ZP, Loureiro JM, Rodriques AE, Conference Proceedings for Chempor 93, Porto, Portugal, 1993
  5. Matros YS, "CAtalytic Processes Under Unsteady-State Conditions, Studies in Surface Science and Catalysis," Elsevier, 43, 1989
  6. Antonucci P, Giordano N, Bart JCJ, J. Chromatogr., 150, 309, 1978
  7. Vaporciyan GG, Kadlec RH, AIChE J., 33, 1334, 1987
  8. Vaporciyan GG, Kadlec RH, AIChE J., 35, 831, 1989
  9. 오민, 문제권, HWAHAK KONGHAK, 게재예정, 1998
  10. Ruthven DM, Farooq S, Knaebel KS, "Pressure Swing Adsorption," VCH, 1993
  11. Yang R, "Gas Separation by Adsorption Processes," Butterworths, Boston, 1985
  12. Alpay E, Chatsiriwech D, Kershenbaum LS, Hull CP, Kirkby NF, Chem. Eng. Sci., 49, 5845, 1994
  13. Alpay E, Ph.D. Dissertation, University of Cambridge, UK, 1992
  14. Yongsunthon I, Oh M, Alpay E, AIChE Annual Meeting, Chicago, II, U.S.A., 1996
  15. Oh M, Pantelides CC, Comput. Chem. Eng., 20(6-7), 611, 1996
  16. Pantelides CC, Barton P, Comput. Chem. Eng., 17(S), 263, 1993