Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.1, 92-97, 1998
초임계 물에 의한 페놀 폐수의 산화 특성
Oxidation Characteristics of Phenol-based Waste Water by Supercritical Water
관형 반응기를 이용하여 페놀 시험 폐수(500ppm)의 초임계 산화 반응 특성을 평가하였다. 산화 반응 조건(온도 : 300-440℃, 압력 : 180-290bar, 과잉산소백분율 0, 300, 600, 800%, 체류시간 : 0.7-11초 등)의 변화에 따른 페놀, 산소, 그리고, 물의 농도에 대한 산화 반응 차수와 속도상수 k를 결정하였다. 페놀의 전환율은 반응기내 반응물의 체류시간에 비례하는 것으로 나타났으며, 440℃의 온도에서 수행된 산화반응에서는 체류시간 약 5초에서 90%의 전환율을 나타내었다. 실험 영역에서 페놀의 산화는 1차 반응차수를 나타내었으며, 산소 농도에 대한 반응차수 b는 실험 조건에 따라 0.437±0.027의 값을 나타내었다. 물의 밀도가 산화반응에 영향을 주는 결과를 이해할 수 있는 반응차수 c는 반응 조건에 따라 0.653±0.027의 값을 나타내었다. 또한, 등압(240bar)하의 일정 온도 범위(300-440℃)에서 측정한 산화반응의 활성화에너지는 18.31 kcal/mol인 것으로 나타났다.
Supercritical water oxidation characteristics of aqueous phenol solution(500 ppm) was experimentally evaluated using a stainless steel 316 tubular-type reactor(0.21 cm ID x 34 cm L). The orders of reactions and rate constants with respect to the concentration of phenol, oxygen and water were determined under various oxidation conditions(i.e., temperatures : 300-440℃, pressures : 180-290 bar, percent of excess amount of oxygen : 0, 300, 600, 800 %, mean residence time : 0.7-11 sec). The conversion of phenol was linearly proportional to the residence time. For example, more than 90 % of phenol was oxidized at the residence time of 5 sec. Within the experimental conditions, the orders of oxidation with respect to phenol and oxygen concentrations were 1 and 0.437±0.027, respectively. Reaction order of water was proportional to density at constant temperature and pressure, and it was 0.653±0.027. The activation energy for the oxidation reaction at 240 bar and 300-440℃ was 18.31 kcal/mol.
[References]
  1. Yoo KP, Noh MJ, Joung SN, Choi KH, Han JH, Chang KS, Chem. Ind. Technol., 14(3), 263, 1996
  2. Yoo KP, Noh MJ, Joung SN, Choi KH, Han JH, Chang KS, Chem. Ind. Technol., 14(4), 379, 1996
  3. Show RW, Brill TB, Clifford AA, Eckert CA, Franck EU, Chem. Eng. News, 23, 25, 1991
  4. Pray HA, Schweickert CE, Minnich BH, Ind. Eng. Chem., 44(5), 1146, 1952
  5. Townsend SH, Abraham MA, Huppert GL, Klein MT, Paspek SC, Ind. Eng. Chem. Res., 27(1), 143, 1988
  6. Caruana CM, Chem. Eng. Prog., 91(4), 10, 1995
  7. Thornton TD, Savage PE, J. Supercrit. Fluids, 3(4), 240, 1990
  8. Thornton TD, Savage PE, AIChE J., 38(3), 321, 1992
  9. Thornton TD, Savage PE, Ind. Eng. Chem. Res., 31(11), 2451, 1992
  10. Li R, Thornton TD, Savage PE, Environ. Sci. Technol., 26(12), 2388, 1992
  11. Meyer JC, Marrone PA, Tester JW, AIChE J., 41(9), 2108, 1995
  12. Yang HH, Eckert CA, Ind. Eng. Chem. Res., 27(11), 2009, 1988
  13. Jin L, Ding Z, Abraham MA, Chem. Eng. Sci., 47(9-11), 2659, 1992
  14. Killilea WR, Swallow KC, Hong GT, J. Supercrit. Fluids, 5(1), 72, 1992
  15. Lee DS, Gloyna EF, Environ. Sci. Technol., 26, 1587, 1992
  16. Lee DS, Gloyna EF, J. Supercrit. Fluids, 3(4), 249, 1990
  17. Lee DS, Park KS, Nam YW, HWAHAK KONGHAK, 35(2), 231, 1997
  18. Harr L, Gallagher JS, Kell GS, "NBS/NRC Steam Tables," McGraw-Hill Book Co., U.S.A., 1984