Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.1, 85-91, 1998
EVA 공중합반응기의 모델링 및 해석
Modeling and Analysis of an EVA Copolymerization Reactor
에틸렌과 vinyl acetate(VA)의 자유라디칼 공중합반응은 높은 압력과 온도에서 이루어진다. 본 연구에서는 ethylene-vinyl acetate(EVA) 괴상 공중합반응에 사용되는 단열 autoclave 반응기를 적절하게 나타내기 위하여 two-compartment four-cell 모델을 사용하였다. 여러 문헌에서 적용된 반응기구들을 비교, 분석하여 실험결과에 부합하는 자유라디칼 및 에틸렌 분해반응에 적용되는 반응속도 상수의 값들을 결정하였다. 조업조건의 변화가 반응기의 성능에 미치는 영향을 체계적으로 해석하기 위하여 분기선도를 작성하여 조업이 가능한 영역을 분석하였으며, two-parameter continuation 방법을 사용하여 분기집합을 구성함으로써 정상상태에서 반응계의 전반적인 구조를 파악하였다. 또한 반응기 성능과 평균분자량과의 관계를 다각적으로 검토하여 생산량을 증가시킬 수 있는 방안을 제시하였다.
The free radical copolymerization reactor of the ethylene and VA is operated under the conditions of high pressure and temperature. In this study, a two-compartment four-cell model is used to describe the behavior of the adiabatic autoclave reactor for the EVA bulk copolymerization reaction. The parameters for various reaction rate constants are determined by analyzing the free radical and ethylene decomposition reaction mechanisms and associated data adopted in many studies. The bifurcation diagrams are constructed to investigate systematically the effects of various operation parameters on the reactor performance, and the feasible operating regions are analyzed. The overall structure of the steady states of the reaction system is examined by organizing the bifurcation set by two-parameter continuation method. The strategy for the production rate increase is also proposed by elucidating the relationship between the reactor performance and the molecular weight.
[References]
  1. Hanford WE, Wilmington D, U.S. Patent, 2,396,785, 1946
  2. Burkhart RD, Zutty NL, J. Polym. Sci., 1, 1137, 1963
  3. vander Meer R, German AL, J. Polym. Sci., 17, 571, 1979
  4. Ratzsch M, Schneider W, Musche D, J. Polym. Sci., 9, 785, 1971
  5. vander Meer R, German AL, Heikens D, J. Polym. Sci., 15, 1765, 1977
  6. Terteryan RA, Barash YI, Shapkina LN, Vysokomol. Soyed, A10, 1940, 1968
  7. Brown FE, Ham GE, J. Polym. Sci., 2, 3623, 1964
  8. German AL, Heikens D, J. Polym. Sci., 9, 2225, 1971
  9. Watanabe HW, Kurihara K, Takehisa M, "Proc. Pacific Chemical Engineering Congress, AIChE, New York, 225, 1972
  10. Watanabe HW, Takehisa M, 안전공학, 12, 174, 1973
  11. Luft G, Henning W, Dorn M, Die Angew. Makromol. Chemie, 141, 207, 1986
  12. Zhang SX, Read NK, Ray WH, AIChE J., 42(10), 2911, 1996
  13. Ham JY, Rhee HK, Proc. Asian-Pacific Chem. Reaction Eng. Forum., 2, 597, 1996
  14. Ham JY, Rhee HK, J. Process Control, 6(4), 241, 1996
  15. Dickey DS, Chem. Eng. J., 9, 73, 1984
  16. Hamer JE, Akramov TA, Ray WH, Chem. Eng. Sci., 6, 1897, 1981
  17. Jang SS, Yang WL, Chem. Eng. Sci., 44, 515, 1989