Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.1, 62-67, 1998
가성소다 용융침출에 의한 석유코우크스 탈활공정에서의 수소제조
Hydrogen Production during the Desulfurization of Petroleum Cokes with Molten Caustic Leaching
고유황(>6%) 석유코우크스로부터 가성소다 용융침출에 의한 탈황과정에서 부분적으로 이루어지는 가스화에 대한 연구를 수행하였다. 연구결과 석유코우크스 탈황조건인 550℃이상, caustic/coke 비 4에서 약 1.4L/g cokes의 수소가 순도 96%로 생산되는 것을 알 수 있었다. 이는 저유황 석탄으로부터 가성소다를 이용하여 얻어지는 수소량보다 약 1.5배 큰 것이다 석유코우크스로부터 탈황과정에서 생산되는 수소량이 특히 많은 것은 석유코우크스가 갖고 있는 유기황이 탈황되면서 탈황된 자리에 활성화된 탄소가 만들어지고 이들이 수소화에 참여하였기 때문이다. 수소 발생량은 caustic/coke 비에 따라 증가하였으며 발생속도는 온도에 비례하였다.
Partial gasification during the desulfurization with molten caustic from high sulfur(>6 %) petroleum coke was investigated. The results show that the hydrogen of purity more than 96% was evolved with 1.4 liter/g coke at the treatment condition of 550℃, and caustic to coke ratio four. This amount was 1.5 times larger than the evolved hydrogen from low sulfur bituminous coal. Larger amount of hydrogen evolved from high sulfur petroleum cokes was due to the activated site produced during the desulfurization process and its participation to the hydrogen production. The amount of evolved hydrogen was proportional to the caustic to coke ratio and the gas evolution rate to the temperature.
[References]
  1. Sze MC, Bauer WV, Oil Gas J., 22, 64, 1979
  2. Vrvanovic Z, High Temp-High Press, 13, 167, 1981
  3. Vrvanovic Z, High Temp-High Press, 15, 107, 1983
  4. Mason RB, Ind. Eng. Chem., 51(9), 1027, 1959
  5. Parmar BS, Tollefson EL, Can. J. Chem. Eng., 55, 185, 1977
  6. Mochida I, Marutsuka T, Korai Y, Fujitsu H, Ind. Eng. Chem. Prod. Res. Dev., 25, 30, 1986
  7. Mochida I, Marutsuka T, Furuno T, Korai Y, Fujitsu H, High Temp-High Press, 19, 545, 1987
  8. Mochida I, Furuno T, Fujitsu H, Oyama T, Fujimoto K, Fuel, 67, 678, 1988
  9. Saha C, Tollefson EL, Can. J. Chem. Eng., 73(2), 211, 1995
  10. Hall ES, Tollefson EL, Can. J. Chem. Eng., 60, 418, 1982
  11. George ZH, Schneider LG, Fuel, 61, 1260, 1982
  12. Ityokumbul MT, Kasperski KL, Fuel Process. Technol., 37(3), 281, 1994
  13. Ityokumbul MT, Fuel Process. Technol., 38(2), 127, 1994
  14. Ityokumbul MT, Can. J. Chem. Eng., 72(2), 370, 1994
  15. Lee SH, Shon EK, HWAHAK KONGHAK, 32(3), 376, 1994
  16. Lee SH, Show EK, Park SW, HWAHAK KONGHAK, 33(6), 675, 1995
  17. Han W, Lee SH, Park CS, Yang HS, HWAHAK KONGHAK, 35(1), 77, 1997
  18. Lee SH, Shon EK, Fuel, 76, 241, 1997
  19. Yamashita Y, Ouchi K, Carbon, 20(1), 41, 1982
  20. Yamashita Y, Ouchi K, Carbon, 20(1), 47, 1982
  21. Yamashita Y, Ouchi K, Carbon, 20(1), 55, 1982
  22. Al-Haj-Ibrahim K, Morsi BI, Ind. Eng. Chem. Res., 31, 1835, 1992
  23. Tsai SC, "Fundamentals of Coal Beneficiation and Utilization," Chapter 5, Elsevier Publishing Co., NY, 1982
  24. Mochida I, Nakamura E, Maeda K, Carbon, 13, 489, 1975
  25. Mochida I, Nakamura E, Maeda K, Takeshita K, Carbon, 14, 123, 1976
  26. Patrick JW, Walker A, Fuel, 70, 465, 1991