Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.1, 42-48, 1998
Couette-Tailor 반응기에서 기-액 반응성 탄산칼슘 결정화의 수학적 해석을 위한 모델 연구
Models for Mathematical Analysis of Gas-Liquid Reaction Crystallization of Calcium Carbonate in Couette-Taylor Reactor
쿠에트-테일러 결정화기에서 기상의 이산화탄소와 액상의 수산화칼슘의 반응에 의해 생성되는 탄산칼슘의 결정화 공정을 수학적으로 모델링하고 그 해법에 대한 연구를 진행하였다. 쿠에트-테일러 결정화기를 PFR 및 다단식 MSMPR로 가정하여 각각에 대한 개체수 수지식 및 물질 수지식을 유도하였다. 쿠에트-테일러 결정화기를 PFR로 해석하는 경우에 1차 편미분 방정식으로 나타나는 개체수 수지식을 유한 차분법을 사용하여 이산화한 다음 양함수적으로 주어지는 개체수 분포를 구하였다. 해석과정에서 나타나는 상미분 방정식은 IMSL의 DGEAR 부프로그램을 사용하여 해석하였다. 해석 결과 연속된 MSMPR로 모델링한 경우가 PFR로 모델링한 경우보다 입자 크기 분포가 넓고 입자 크기도 크게 나왔다.
The mathematical modeling of crystallization of calcium carbonate which is formed by the reaction of gaseous carbondioxide and liquid calciumhydroxide in Couette-Taylor crystallizer is conducted. Couette-Taylor crystallizer is modeled by PFR and series-MSMPR crystallizer. For each case, population balance and mass balance is derived. The population balance of PFR gives 1st order partial differential equation. This equation is discretized by finite difference method and is solved explicitly. The ordinary differential equations which are derived in modeling is solved by DGEAR subroutine of IMSL library. The particle size distribution of series-MSMPR model is more wide than that of PFR model and mean particle size is larger than that of PFR model.
[References]
  1. Hulburt HM, Katz S, Chem. Eng. Sci., 19, 555, 1964
  2. Wey J, Estrin J, Ind. Eng. Chem. Process Des. Dev., 12, 236, 1973
  3. Chang R, Wang M, Ind. Eng. Chem. Process Des. Dev., 23, 463, 1984
  4. Randolph AD, Larson MA, "Theory of Particulate Processes," 2nd ed., Academic Press, N.Y., 1988
  5. Marchal P, David R, Klein JP, Vellermaux J, Chem. Eng. Sci., 43, 59, 1988
  6. Tavare NS, Garside J, Larson MA, Chem. Eng. Commun., 47, 185, 1986
  7. Kataoka K, Doi H, Hongo T, Futagawa M, J. Chem. Eng. Jpn., 8, 472, 1975
  8. Kataoka K, Doi H, Komai T, Int. J. Heat Mass Transf., 20, 57, 1977
  9. Kataoka K, Takigawa T, AIChE J., 27, 504, 1981
  10. Gu ZH, Fahidy TZ, Chem. Eng. Sci., 40, 1145, 1985
  11. Margaritis A, Wilke CR, Biotechnol. Bioeng., 20, 709, 1978
  12. Scott CD, Sep. Sci. Technol., 21, 905, 1986
  13. Yoshisato RA, Korndorf LM, Carmichael GR, Datta R, Sep. Sci. Technol., 21, 727, 1986
  14. Tobler W, Filtr. Separation, 16, 630, 1979
  15. Tobler W, Filtr. Separation, 19, 329, 1982
  16. Park JY, "A Study of Dynamic Separation of Silica Slurry Using a Rotating Membrane Filter," Ph.D. Thesis, Seoul National University, Seoul, 1992
  17. Bird RB, Stewart WE, Lightfoot EN, "Transport Phenomena," John Wiley & Sons Inc., N.Y., 1984
  18. Wendt F, Ingen. Arch., 4, 577, 1933
  19. Kataoka K, "Encyclopedia of Fluid Mechanics," (ed. Cheremisinoff, N.P.) Gulff, Huston, Texas, 1, 1986
  20. Murase T, Iritani E, Chidphong P, Atsumi K, Shirato M, Jpn. J. Water Pollution Res., 11, 307, 1988
  21. Murase T, Iritani E, Chidphong P, Kano K, Kag. Kog. Ronbunshu, 15, 1179, 1989
  22. Juvekar VA, Sharma MM, Chem. Eng. Sci., 28, 825, 1973
  23. Astarita G, "Mass Transfer with Chemical Reaction," Elsevier, Amsterdam, 1967
  24. Jones AG, Hostomsky G, Zhou L, Chem. Eng. Sci., 47, 3825, 1992
  25. Wachi S, Jones AG, Chem. Eng. Sci., 46, 3289, 1991
  26. Karpinski PH, Chem. Eng. Sci., 40, 641, 1985
  27. Hostomsky J, Jones AG, J. Phys. D: Appl. Phys., 24, 165, 1991
  28. Packter A, J. Chem. Soc., 859, 1968
  29. Kim WS, "Study of Turbulent Mixing Effects on Barium Sulfate Precipitation in Mixed Suspension and Mixed Product Removal and Semi-Batch Reactors," Ph.D. Thesis, The Pennsylvania State University, 1992
  30. Reddy MM, Nancollas GH, J. Colloid Interface Sci., 36, 166, 1971
  31. Nielsen AE, Toft JM, J. Cryst. Growth, 6, 278, 1984
  32. Plummer LN, Busenberg E, Geochim. Cosmochim. Acta, 46, 1011, 1982