Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.1, 27-33, 1998
생체기능성 고분자를 이용한 Testosterone의 선택적 분리
Selective Separation of Testosterone using Biofunctional Polymer
Molecular imprinting technique(MIT) 방법을 사용하여 steroid에 선택적 친화성을 가지는, 특히, testosterone에 대해 높은 친화성을 가지는 생기능성 고분자를 합성하였다. MIT방법중 methacrylate ester를 이용한 공유결합과 수소결합 및 이온결합과 같은 비공유결합을 사용하여 고분자를 만들었다. 그리고 일련의 유사한 구조를 가진 steroids를 사용하여 imprinting 고분자 구조에 영향을 미치는 분자구조의 특징을 조사한 결과 C-17 위치의 OH-group과 carboxyl group 사이에 형성되는 수소결합이 지배적인 결합임을 알 수 있었다. Imprinting 고분자의 분리 능력은 HPLC 실험을 통하여 얻어진 용량인자(capacity factor) 및 분리인자(separation factor)를 사용하여 비교하였으며 estrone에 대해서는 9.6배의 높은 분리 능력을 나타내었다. 공유결합에 의해서 만들어진 imprinting 고분자의 경우 주형(template)을 제거하기 위해서 사용된 가수분해 정도에 대한 영향을 살펴보았으며 12시간 가수분해를 시킬 경우 용량인자(capacity factor)가 낮아짐을 알 수 있었다. 특히 비공유결합 imprinting에 의해 만들어진 고분자의 경우 testosterone에 대해 높은 결합능력(용량인자; 5.10)을 나타내었으며 그외 본 연구에 사용된 다른 steroids(estrone, progesterone, testosterone propionate and β-estradiol)는 정지상(void marker)과 비슷한 값(용량인자; 0.53-1.52)을 나타내고 있었다. Imprinting 고분자를 사용하여 testosterone과 steroids 혼합물의 분리 정도를 측정해 본 결과 바탕선(baseline)분리가 이루어짐을 볼 수 있었다.
The molecular imprinting technique(MIT) was used in synthesis of biofunctional polymers having affinity of steroid, especially high affinity for testosterone. This MIT method was developed based on the covalent bonding using the methacrylate ester and non covalent interaction such as hydrogen bonding and ionic interaction. Using a suite of similar steroids we were able to identify features of the molecules which affect their affinity for the polymer matrix. As a result, hydrogen bonding formed between OH group and carboxyl group was known as the dominant bonding. In case of the covalently imprinted polymer, it was investigated about the degree of the hydrolization used in order to remove the template being inside the polymer matrix. We were able to know a diminution of the capacity factor in case of doing hydrolization for 12 hrs. The polymer obtained(non-covalently imprinted) was found to interact specifically with testosterone(capacity factor; 5.10), while the other steroids under study(estrone, progesterone, testosterone propionate and β-estradiol) were eluded closely to the void volume in the HPLC experiments(capacity factor; 0.53-1.52). The mixture of testosterone and other steroids was shown to be separated by the imprinted polymer with near baseline resolution.
[References]
  1. Wulff G, Angew. Chem.-Int. Edit., 34, 1812, 1995
  2. Wulff G, Trends Biotech., 11, 85, 1993
  3. Mosbach K, Trends Biochem. Sci., 19, 9, 1994
  4. Shea K, J. Trends Polym. Sci., 2, 166, 1994
  5. Nicholls IA, Andersson LI, Mosbach K, Ekberg B, Trends Biotechnol., 13, 47, 1995
  6. Wulff G, Schauhoff S, J. Org. Chem., 56, 395, 1991
  7. Shea KJ, Sasaki DY, Stoddard GJ, Macromolecules, 22, 1722, 1989
  8. Shea KJ, Sasaki DY, J. Am. Chem. Soc., 111, 3442, 1989
  9. Shea KJ, Dougherty TK, J. Am. Chem. Soc., 108, 1091, 1986
  10. Sellergren B, Makromol. Chem., 190, 2703, 1989
  11. Matsui J, Kato T, Takeuchi T, Suzuki M, Yokoyama K, Tamiya E, Karube I, Anal. Chem., 65, 2223, 1993
  12. Sellergren B, Shea KJ, J. Chromatogr. A, 654, 17, 1993
  13. Kemp M, Mosbach K, J. Chromatogr. A, 664, 276, 1994
  14. Vlatakis G, Andersson LI, Muller R, Mosbach K, Nature, 361, 645, 1993
  15. Kemp M, Mosbach K, J. Chromatogr. A, 691, 317, 1995
  16. Sarhan A, Wulff G, Makromol. Chem., 183, 1603, 1982
  17. Bystrom SE, Borje A, Akermark B, J. Am. Chem. Soc., 115, 2081, 1993
  18. Whitcombe MJ, Rodriguez ME, Villar P, Vulfson EN, J. Am. Chem. Soc., 117(27), 7105, 1995
  19. Sellergren B, Shea KJ, J. Chromatogr., 635, 31, 1993
  20. Cheong SH, McNiven S, Rachkov AE, Levi R, Yano K, Karube I, Macromolecules, accepted, 1997
  21. Snyder LR, Kirkland JJ, "Introduction to Modern Liquid Chromatography," Wiley Interscience, New York, 1974