Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.35, No.5, 776-781, 1997
용융가성소다 침출법에 의한 석유코우크스 탈황공정에서 세정조건의 영향
Effect of Washing Conditions on the Desulfurization of Petroleum Cokes by Molten Caustic Leaching
고유황 석유코우크스를 용융가성소다로 처리하는 공정에서 세정조건이 탈황,탈회에 미치는 영향에 대해 고찰하였다. 석유코우크스를 용융가성소다로 침출후에 증류수만으로 세정하면 유기황은 99.4% 제거되지만 회분은 sodium의 잔류로 인해 원료보다 2배 이상 증가하였다. 가성소다에 의해 제거되는 무기물은 Si,Al,V등 수용성 sodium염을 형성하는 무기물들이며 염기성 무기물들(Na,K,Fe 등)은 산처리에 의해서 제거가 가능하였다. 유기황이 제거되는 과정에서 황의 일부가 코우크스와 반응하여 무기황 형태로 회분에 잔류하기 때문에 처리후 황함량은 고온산화법으로 분석되는 유기황과 회분 중의 무기황을 분석하여 같이 나타내어야 한다. 산처리과정에서 낮은 산농도로 처리하면 회분 중 황의 함량이 크게 감소하지 않으며 이를 제거하기 위해서는 0.3N이상의 산농도가 필요하였다. 용융가성소다 침출법으로 처리하면 표면적이 원료의 3.8㎡/g에서 처리후에는 1,200㎡/g으로 증가하며 이때 표면적의 변화는 산처리에 의해 영향을 받아 산농도 0.3N HCl로 처리한 경우가 가장 큰 표면적을 나타내었다.
Effect of washing conditions on the desulfurization and demineralization from petroleum coke were investigated in the leaching process with molten caustic. Washing the petroleum coke with water could remove 99.4% of sulfur, but the ash content increased more than twice due to the remaining sodium in the coke matrix. Caustic could exclude mineral matter such as Si, Al and V which form water soluble sodium salt, but the basic inorganic(Na, K, Fe etc.) could be excluded only by the acid treatment. Because the removing sulfur reacts with coke to form more stable inorganic sulfur compounds, the total sulfur must be expressed by the sum of the sulfur analyzed by the sulfur analyzer and by the ash analyzer. If the acid treatment was conducted with low acid concentration, the decrease in the amount of sulfur content in ash was not satisfactory and needed 0.3 N acid to remove these. Surface area increased from 3.8 to 1,200m2/g after treatment with caustic, and it was affected by acid treatment that the maximum surface area appeared at the acid concentration of 0.3 N.
[References]
  1. Philips CR, Chao KS, Fuel, 56, 70, 1977
  2. Sze MC, Bauer WV, Oil Gas J., 22, 64, 1979
  3. Vrvanovi Z, High Temp. High Press, 13, 167, 1981
  4. Vrvanovi Z, High Temp. High Press, 15, 107, 1983
  5. Mason RB, Ind. Eng. Chem., 51(9), 1027, 1959
  6. Parmar BS, Tollefson EL, Can. J. Chem. Eng., 55, 185, 1977
  7. Mochida I, Marutsuka T, Korai Y, Fujitsu H, Ind. Eng. Chem. Prod. Res. Dev., 25, 30, 1986
  8. Mochida I, Marutsuka T, Furuno T, Korai Y, Fujitsu H, High Temp. High Press, 19, 545, 1987
  9. Mochida I, Furuno T, Fujitsu H, Oyama T, Fujimoto K, Fuel, 67, 678, 1988
  10. Saha C, Tollefson EL, Can. J. Chem. Eng., 73(2), 211, 1995
  11. Hall ES, Tollefson EL, Can. J. Chem. Eng., 60, 418, 1982
  12. George ZH, Schneider LG, Fuel, 61, 1260, 1982
  13. Ityokumbul MT, Kasperski KL, Fuel Process. Technol., 37(3), 281, 1994
  14. Ityokumbul MT, Fuel Process. Technol., 38(2), 127, 1994
  15. Ityokumbul MT, Can. J. Chem. Eng., 72(2), 370, 1994
  16. Al-Haj-Ibrahim K, Morsi BI, Ind. Eng. Chem. Res., 31, 1835, 1992
  17. Lee SH, "Development of Desulfurization Technique from Petroleum Cokes," KIER report, report No. KIER-963301, 1996
  18. Tsai SC, "Fundamentals of Coal Beneficiation and Utilization," Chapter 5, Elsevier Publishing Co., NY, 1982