Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.35, No.5, 678-683, 1997
Acrylonitrile+Water, Acetonitrile+Water, Acrylonitrile+Acetonitrile 혼합계의 상평형과 과잉부피
Phase Equilibria and the Excess Molar Volume for the Systems Acrylonitrile+Water, Acetonitrile+Water, and Acrylonitrile+Acetonitrile
Acrylonitrile+water, acetonitrile+water, acrylonitrile+acetonitrile 각 이성분계 혼합물에 대한 323.15 K 등은 기액평형을 headspace gas chromatography(H.S.G.C)법으로 측정하였다. Water를 포함한 혼합계에서는 공비점을 나타내었으며, 특히 acrylonitrile+water 혼합계는 acrylonitrile 조성 0.05-0.90 정도에서 불용영역이 있어 불균일 공비점을 보였다. gE 모델식에 의한 상관과 modified UNIFAC식을 이용한 추산결과 실측치와의 기상조성의 평균편차가 1% 미만의 작은 편차로 일치함을 확인하였다. 298.15 K에서 측정된 과잉부피는 모두 이상성으로부터 음의 편차를 보였으며, Redlich-Kister 다항식에 1% 미만의 편차로 합치되어 좋은 상관관계를 보였고, 매개변수를 이용하여 무한 희석상태의 부분 과잉 몰부피도 계산하였다. Acetonitrile+water 혼합계에 대해 spinning band 증류기를 이용하여 측정한 정확한 공비점은 323.15 K, 279.9 torr에서 x1=0.757이었으며, 이는 H.S.G.C에 의한 결과인 x1=0.755와 거의 일치한다. 이 계의 공비조성은 압력이 감소할수록 acetonitrile이 농후한 지역으로 이동하였다.
Isothermal vapor-liquid equilibria(VLE) for the binary systems of acrylonitrile+water, acetonitrile+water, and acrylonitrile+acetonitrile were measured by headspace gas chromatography(H.S.G.C) at 323.15 K. Both aqueous systems have the azeotropic behaviors. Acrylonitrile+water system has an immiscible region approximately between 0.05 to 0.9 of acrylonitrile mole fractions. VLE data were correlated by common gE models and compared with predicted values by modified UNIFAC group contribution method. Their mean deviations in vapor phase composition were less than 1%. Excess molar volumes(vE) of the same binary mixtures at 298.15 K showed negative deviation from the ideality. These data were agreed well within 1% mean deviation with Redlich-Kister equation. Partial molar excess volumes at infinite dilution were calculated from the five Redlich-Kister parameters. Precise azeotropic data were measured directly by spinning band distillator for the acetonitrile+water system. The composition of azeotrope by distillation was x1=0.757 at 323.15 K and 279.9 torr, which was very close to the result, x1=0.755, by H.S.G.C. The compositions of azeotropes moved to acetonitrile rich region with decreasing the system pressure.
[References]
  1. Oh JH, Park SJ, Ryu SK, Lee YG, HWAHAK KONGHAK, 32(4), 549, 1994
  2. Oh JH, Park SJ, J. Chem. Eng. Data, 42(3), 517, 1997
  3. Weidlich U, Gmehling J, Ind. Eng. Chem. Res., 26, 1372, 1987
  4. Gmehling J, Li J, Schiller M, Ind. Eng. Chem. Res., 32, 178, 1993
  5. Kolb B, J. Chromatogr., 122, 553, 1976
  6. Redlich O, Kister AT, Ind. Eng. Chem., 40, 345, 1948
  7. Soave G, Chem. Eng. Sci., 27, 1197, 1972
  8. Rao SS, "Engineering Optimization-Theory and Practice," 3rd ed., John Wiley & Sons, 1996
  9. Oh JH, Do MS, Park SJ, HWAHAK KONGHAK, 34(1), 23, 1996
  10. Park SJ, Gmehling J, Korean J. Chem. Eng., 12(2), 152, 1995
  11. Budavari S, "Merck Index," 11th ed., Merck & Co. Inc., New Jersey, 1989
  12. Sugi H, Katayama T, J. Chem. Eng. Jpn., 11, 167, 1978
  13. Gmehling J, Onken U, Arlt W, "Vapor-Liquid Equilibrium Data Collection," DECHEMA, 1981
  14. Reid RC, Prausnitz JM, Poling BE, "The Properties of Gases & Liquids," 4td ed., McGraw-Hill, 1987
  15. Renon H, Prausnitz JM, AIChE J., 14, 135, 1968