Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.35, No.5, 673-677, 1997
Methyldiethanolamine(MDEA)-Hexamethylenediamine(HMDA) 혼합 수용액에 대한 이산화탄소의 흡수 속도 및 흡수능
Absorption Rates and Capacities of CO2 into Aqueous Mixtures of Methyldiethanolamine(MDEA) and Hexamethylenediamine(HMDA)
가스 순환식 흡수평형 장치를 이용하여 20.5%MDEA+0.7%HMDA, 20.5%MDEA+3.5%HMDA, 20.5%MDEA+7.0%HMDA 및 20.5%MDEA+14.4%HMDA 수용액에 대한 이산화탄소의 흡수속도 및 흡수능을 측정하였다. 상대 흡수속도의 비교를 위하여 흡수온도 50 ℃, 초기압력 P=215 ㎪, 이산화탄소 분율 y=0.536의 동일한 초기조건에서 14.7 l/min의 동일한 속도로 흡수가스를 순환하며 측정하였고, 흡수능의 비교를 위하여 이산화탄소 분압 80 ㎪ 이하의 범위에 대한 흡수평형 실험을 50 ℃에서 수행하였다. 본 연구의 실험 영역에서 MDEA 및 HMDA 혼합용액의 이산화탄소 흡수반응은 이산화탄소 농도에 대한 가역 의사 1차반응으로 해석되며, 혼합용액에 대한 겉보기 속도상수는 첨가된 HMDA 농도에 따라 25-292 % 증가하였다. 흡수평형 자료로부터, 연소 배가스 중의 이산화탄소 농도에 해당하는 이산화탄소 분압이 10 ㎪인 경우의 증진인자를 계산한 결과 HMDA 농도의 증가에 따라 20.5 wt%MDEA 수용액에 비하여 13-238 %의 흡수능 증가를 나타내었으며, 본 연구 범위 중 최고 이산화탄소 농도인 이산화탄소 분압 80㎪의 경우 4-108%의 증가율을 나타내고 있었다.
In this paper, absorption rates and capacities of CO2 into aqueous mixture of 20.5wt%MDEA and HMDA(0.7, 3.5, 7.0 and 14.4wt%) were measured with gas circulating absorption equilibrium apparatus. To compare the relative fresh absorption rates of CO2 into aqueous mixtures, absorption rates were measured at 50℃ with initial pressure, CO2 mole fraction and gas circulating rate of 215kPa, 0.536 and 14.7 l/min respectively. And absorption capacities of CO2 into aqueous mixtures were measured at 50℃ over a range of CO2 partial pressure up to 80kPa. From this experiments, absorption kinetics of CO2 into aqueous mixtures of MDEA and HMDA can be regarded as a pseudo-first order reversible reaction. In this system, apparent rate constants of mixture were increased from 25 to 292% than MDEA aqueous solution with increasing concentration of HMDA. Also, as increasing the concentration of HMDA, enhancement factor of CO2 absorption capacities into aqueous mixtures were increased 13-238% than 20.5%MDEA aqueous solution at CO2 partial pressure was 10kPa, and 4-108% increased at CO2 partial pressure was 80kPa.
[References]
  1. Kohl A, Riesenfeld F, "Gas Purification," 4td ed., Gulf Publishing Co., 1985
  2. Ball T, Veldman R, Chem. Eng. Process., 67, 1991
  3. Glasscock DA, Ph.D. Dissertation, University of Texas, Austin, U.S.A., 1990
  4. Erga O, Juliussen O, Lidal H, Energy Conv. Manag., 36(6-9), 387, 1995
  5. Xu GW, Zhang CF, Qin SJ, Wang YW, Ind. Eng. Chem. Res., 31, 921, 1992
  6. Kubek DJ, Kovach DS, U.S. Patent, 4,814,104, 1989
  7. Versteeg GF, vanSwaaij WPM, Chem. Eng. Sci., 43(3), 587, 1988
  8. Blauwhoff PPM, Versteeg GF, vanSwaaij WP, Chem. Eng. Sci., 38(9), 1411, 1983
  9. Yu WC, Astarita G, Savage DW, Chem. Eng. Sci., 40(8), 1585, 1983
  10. Glasscock DA, Critchfield JE, Rochelle GT, Chem. Eng. Sci., 46(11), 2829, 1991
  11. Xu S, Wang YW, Otto FD, Mather AE, Chem. Eng. Sci., 51(6), 841, 1996
  12. Satori G, Savage DW, Ind. Eng. Chem. Fundam., 22, 239, 1983