Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.35, No.5, 633-641, 1997
α-SiO2 분말의 수열 결정화 특성
Characteristics on Hydrothermal Crystallization of α-SiO2 Powders
250-450 ℃에서 3시간 동안의 수열반응을 통해 1-10 ㎛의 평균입경을 갖는 능면체 모양의 α-SiO2 (α-quartz) 단결정 분말을 제조하였다. 실험결과 광화제 농도를 증가시켜 결정성장이 시작되는 수열합성온도를 낮출 수 있었으며, 입자의 크기가 작고 입도분포의 폭이 좁은 분말을 얻을 수 있었다. 한편, 성장기질의 농도나 반응시간을 증가시키면 입자의 크기가 작고 입도분포의 폭이 넓은 분말을 얻을 수 있었다. 또한 반응온도가 증가하면 핵생성이나 결정성장이 모두 빨라지고 입자의 크기도 커짐을 알 수 있었다. 위의 내용을 총괄적으로 표현하기 위하여 결정화 특성을 해석함으로써 평균입경(S)에 관한 특성방정식, S≈1.57 exp(-Ea/RT)·t0.11·CM-0.33·CM0.22·CS0.08를 제안할 수 있었으며, 이 식에서 활성화에너지(Ea)는 8.15 kJ/g㏖K 였다.
Powders of crystalline α-SiO2(α-quartz), having the mean particle size of 1-10μm with shapes of rhombohedron, were prepared by hydrothermal synthesis in the temperature range of 250-450℃ for a 3h reaction. The reaction temperature could be reduced as the concentration of a mineralizer increased. Experimental results showed that the particle size became smaller with its narrow distribution as the concentration of a mineralizer increased. However, the particle size became larger with its wide distribution as the concentration of nutrients and the reaction temperature increased. Both of the nucleation and the crystal growth rate also became faster and the particle size became larger as the reaction temperature increased. The above results were expressed as a characteristic equation for the weight mean particle diameter(S) of synthetic powders, such as S≈1.57exp(-Ea/RT)·CM-0.33·CN0.22·CS0.08 with the activation energy, Ea, was 8.15kJ/gmolK.
[References]
  1. 요업학회: "고도기술 세라믹스," 반도출판사, 서울, 337, 1994
  2. Ichinose N, "Introduction to Fine Ceramics," Ohmsha, Tokyo, 4, 1983
  3. Ikeda T, "Fundamentals of Piezoelectricity," Oxford Univ. Press, New York, 213, 1990
  4. Wu Y, Zeng X, Lavernia EJ, Schoenung JM, Metall. Matls. Trans. A, 27A, 2115, 1996
  5. El-Eskandarany MS, Metall. Matls. Trans. A, 27A, 2374, 1996
  6. Hayakawa M, Nishimura S, "Wet Process for Preparing Ferrites of Magnetoplumbite Structure in Fine Particle Form," United States Patent No. 4,512,906, 23 April, 1985
  7. Yanagisawa K, Ioku K, Yamaski N, J. Ceram. Soc. Jpn., 102(10), 966, 1994
  8. Ewsuk KG, Glass SJ, Loehman RE, Tomsia AP, Fahrenholtz WG, Metall. Matls. Trans. A, 27A, 2122, 1996
  9. Uchiyama Y, Isoda H, Cheng H, Kobayasi K, J. Ceram. Soc. Jpn., 102(7), 675, 1994
  10. Dawson WJ, Ceram. Bull., 67(10), 1673, 1988
  11. Wold A, Dwight K, "Solid State Chemistry," Chapman & Hall, New York, 83, 1993
  12. Chernov AA, "Modern Crystallography III," Springer-Verlag, Berlin, 353, 1984
  13. 이기정, 서경원, 목영일, 아주대학교 공학연구소 논문집, 18, 255, 1995
  14. 서경원, 이기정, 반종성, 정성택, "수열합성법에 의한 단결정 산화물 제조의 기초연구," 한국자원연구소 연구보고서, 아주대학교, 1996
  15. Lee KJ, Seo KW, Yu HS, Mok YI, "Preparation of Fine Crystalline α-Quartz Powder by Hydrothermal Synthesis," Paper Presented at the 2nd Korea-Japan Symposium on Advanced Materials, Seoul, May 10, 1996
  16. Lee KJ, Seo KW, Yu HS, Mok YI, Korean J. Chem. Eng., 13(5), 489, 1996
  17. Lee KJ, Seo KW, Mok YI, Yu HS, HWAHAK KONGHAK, 35(2), 147, 1997
  18. Lee KJ, Seo KW, Yu HS, Mok YI, "Studies on Growth Mechanisms and Characteristic Factors for the Hydrothermal Preparation of α-Quartz Crystal Powders," Paper Presented at the 1997 TMS Annual Meeting, Orlando, Florida, Feb. 9-17, 1997