Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.41, No.3, 349-356, 2003
알칼리염과 니켈염의 혼합물을 촉매로 한 역청탄 촤의 수증기 가스화 반응특성
Steam Gasification of a Bituminous Char Catalyzed by A Salt Mixture of Potassium Sulfate and Nikel Nitrate
호주산 역청탄 촤의 수증기 가스화반응에서 알칼리염과 니켈금속염의 혼합물(K2SO4+Ni(NO3)2)이 나타내는 촉매활성을 상압하의 열천칭반응기를 사용하여 온도 650-850 ℃ 범위에서 조사하였다. 알칼리염 촉매에 니켈금속염을 부가하면 가스화반응속도의 상승효과를 얻을 수 있는데, 반응온도가 낮을수록 그 효과가 크게 나타나 650 ℃에서 약 2배의 반응속도를 얻었다. 본 혼합물은 가스화반응에서 뛰어난 활성을 보이는 K2CO3의 활성에는 미치지는 못하지만 경제적인 촉매물질로서의 가능성을 보였다. 가스화반응의 kinetic 인자를 도출하기 위하여 여러 가지 기-고체 반응모델을 적용한 결과 화학반응 율속인 수축핵모델과 수정된 체적모델이 가스화반응의 거동을 잘 묘사하였다. 역청탄의 촤-수증기 가스화반응의 겉보기 활성화에너지는 99 kJ/mol로 얻어졌으며 혼합물촉매를 사용한 촉매가스화반응에서는 84 kJ/mol이 얻어졌다. 촤 제조시의 열처리 온도가 가스화반응속도 및 촉매의 활성에 미치는 영향도 고려하였다.
The catalytic activity of a salt mixture of potassium sulfate and nickel nitrate on the steam gasification of a bituminous char at 650-850 ℃ has been measured in an atmospheric thermobalance reactor. The mixture of K2SO4 and Ni(NO3)2 exhibits a synergic effect on the activity and the effect is more pronounced at low temperatures. Double the reaction rate could be obtained at 650 ℃ with the mixed catalyst. Although the activity of the mixture does not reach that of potassium carbonate which is known to be one of the best catalysts in coal gasification, the mixutre seems to be an economically favorable catalyst material in coal gasification. Of the three different gas-solid reaction models to evaluate the reaction kinetic parameters, the shrinking core model in chemical reaction controlled regime and the modified volumetric model well describe the gasification behavior. The apparent activation energy of non-catalytic gasification was found to be 99 kJ/mol and that of catalytic gasification 84 kJ/mol. The effect of heat treatment temperature for preparing coal char on the catalytic activity was also considered.
[References]
  1. Lee HW, Kim JW, Kim SD, Lee WK, HWAHAK KONGHAK, 18(6), 489, 1980
  2. Kim JR, Kwon TW, Kim SD, HWAHAK KONGHAK, 25(4), 379, 1987
  3. Song BH, Kang SK, Kim SD, HWAHAK KONGHAK, 30(6), 749, 1992
  4. Song BH, Kim SD, Fuel, 72(6), 797, 1993
  5. Lee WJ, Kim SD, Fuel, 74(9), 1387, 1995
  6. McKee DW, Fuel, 62, 170, 1983
  7. Lee WJ, Kim SD, Song BH, Korean J. Chem. Eng., 18(5), 640, 2001
  8. Yagi S, Kunni D, Chem. Eng. Sci., 16, 372, 1961
  9. Wen CY, Ind. Eng. Chem., 60(9), 34, 1968
  10. Kasaoka S, Sakata Y, Tong C, Ind. Eng. Chem., 25(1), 160, 1985
  11. Choi YK, Moon SH, Lee HI, Lee WY, Rhee HK, HWAHAK KONGHAK, 30(3), 292, 1992
  12. FUNG DPC, KIM SD, Korean J. Chem. Eng., 7(2), 109, 1990
  13. Lee JM, Kim YJ, Lee WJ, Kim SD, HWAHAK KONGHAK, 35(1), 121, 1997
  14. Levenspiel O, Chemical Reaction Engineering 3rd, Wiley Inc., New York, 1999
  15. Song BH, Jang YW, Yim SB, "A Kinetic Study of Steam Gasification of Waste Tire," 17th Int. Symp. Chemical Reaction Eng., paper# 688, Hongkong, 2002
  16. Chin G, Kimura S, Tone S, Otake T, Int. Chem. Eng., 23, 105, 1983
  17. Haga T, Nogi K, Amaya M, Nisiyama Y, Appl. Catal., 67, 189, 1991
  18. Kayembe N, Pulsifer AH, Fuel, 55, 211, 1976
  19. Toda Y, Fuel, 52, 99, 1973