Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.41, No.3, 343-348, 2003
가용성 폴리아닐린 전해질을 사용한 탄탈 캐패시터의 성질에 미치는 계면활성제의 효과
Effect of Surfactant on the Properties of Tantalum Capacitor Using Soluble Polyaniline Electrolyte
탄탈륨 고체전해캐패시터는 전해질 용액에 담가 코팅하는 방법으로 제작하였다. 전해액은 화학적으로 중합된 폴리아닐린파우더와 도판트[camphorsulfonic acid(CSA)와 dodecylbenzenesulfonic acid(DBSA)]를 1:2 몰비율로 유기용매(trifluoroacetic acid, 클로로포름) 안에서 혼합하여 제조하였다. 양성자성 용매인 trifluoroacetic acid를 사용하여 제작된 탄탈륨 캐패시터는 용량 및 손실에서 향상된 결과를 나타내었다. 또한 함침률 증가를 위하여 폴리아닐린 전해액은 계면활성제(N-lauryl-β-aminopropionic acid, sorbitan mono-oleate)를 첨가하여 제조하였으며, 그 결과 N-lauryl-β-aminopropionic acid가 첨가된 폴리아닐린 전해질을 사용하여 제작된 탄탈륨 캐패시터의 경우 가장 높은 함침률(98 μF)과 낮은 손실(3%) 특성을 얻었다. 양성자성 용매를 사용한 경우 탄탈륨 캐패시터는 향상된 특성을 나타내었으며, 이는 전해액안의 유기용매와 산화탄탈륨간의 상호작용에 의한 용매효과(solvent effect) 즉, 극성 용매(전해질 용액) 안에서의 수소와 산화탄탈륨 소자내부에 존재하는 산소와의 수소결합(hydrogen bonding) 형성에서 기인하며, 계면활성제를 사용한 경우는 선택된 계면활성제가 비극성 사슬과 양성자인 수소를 함유하고 있어 비극성인 폴리아닐린 주사슬과의 구조적 친화성을 갖는 동시에 산화탄탈륨 소자와의 수소결합을 통해 pore 내부로의 함침률의 증가한 것으로 판단된다.
Tantalum solid electrolytic capacitors were fabricated by dip coating process into the electrolyte solutions which mixed polyaniline powder with dopants[camphorsulfonic acid(CSA) and dodecylbenzenesulfonic acid(DBSA)] respectively with the mole ratio of 1:2. This mixed powders were dissolved in solvents trifluoroacetic acid and chloroform respectively to prepare the polymer electrolyte. Tantalum electrolytic capacitors prepared with polyaniline solution dissolved in protic solvent such as trifluoroacetic acid showed a high capacitance and a low tanδ. Polyaniline electrolyte solution containing surfactant was prepared by adding N-lauryl-β-aminopropionic acid and sorbitan monooleate to polyaniline solution prepared previously. Polyaniline electrolyte solution containing N-lauryl-β-aminopropionic acid surfactant showed a high capacitance(98 μF) and a low tanδ(3%). In the case of using polyaniline dissolved in the protic solvents, a good affinity was obtained due to a hydrogen bond between hydrogens in protic solvent (electrolytic solution) and oxygens in tantalum oxide. In the case of using surfactants, improved capacitor characteristics was also obtained due to a increase of the affinity between surfactant having aprotic chains and hydrogens and aprotic polyaniline chain and a increase of impregnation rate of the polyaniline solution induced a hydrogen bonding between hydrogen in the surfactant and surface of the tantalum oxide.
[References]
  1. Kim J, Cho S, Min H, Choi J, Hwang K, J. Korean Ind. Eng. Chem., 11(5), 535, 2000
  2. Nishino A, J. Power Sources, 60, 137, 1996
  3. Hori Y, NEC Technical Report, 49(10), 68, 1996
  4. Mitsui K, Kumisawa K, "Condenser Review,", 45(2), 84, 1993
  5. Energy Devices Division, "Resin Mold Type of Tantalum Capacitor," NEC Co., 3-9, 2000
  6. "Tantalum Capacitors: A 1998-2002 Technical-Economic Analysis," Paumanok Publications, Inc., North Carolina, 1998
  7. Yamuchi Y, "A Trend of Tantalum Capaciotr as an Anode Device," Electrochemistry Symposium, Janggang Technical Science Univ., 43-37, 1998
  8. Harada D, NEC Technical Report, 49(10), 82, 1996
  9. Fukuda M, Yamamoto H, Isa I, "Solid Electrolyte Capacitor," U.S. Patent, No. 4,780,796, 1988
  10. Tanba S, Taketani Y, "Condenser Review,", 45(2), 57, 1993
  11. Kudoh Y, Akami K, Matsuya Y, Synth. Met., 102, 973, 1999
  12. Sakata K, Kobayashi A, Fukami T, "Method of Manufacturing Solid Electrolytic Capacitor," U.S. Patent, No. 5,457,862, 1995
  13. Kudoh Y, Kojima T, Denki Kagaku, 64(1), 41, 1996
  14. Kazuhiko F, Arai S, "Method of Manufacturing Solid Electrolytic Capacitor," Japan Patent, 10-303080, 1998
  15. Larmat F, Reynolds JR, Qiu YJ, Synth. Met., 79, 229, 1996
  16. Jang KS, Min HK, Oh EJ, Korean J. Appl. Phys., 12(5), 444, 1999