Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.41, No.3, 307-312, 2003
오존 처리된 페놀계 활성탄소섬유의 표면 특성
Surface Characteristics of Ozone Treated Phenolic Based Activated Carbon Fibers
액상에서의 오존 산화 반응에 의해 활성탄소섬유 표면 산소의 함량은 17.0 wt%에서 22.4 wt%로 증가하였고, 수소의 함량은 1.9 wt%에서 2.7 wt%로 증가하였다. 오존 산화 개시제를 달리하여 처리하면 활성탄소섬유에 생성되는 관능기들과 총산도값을 조절할 수 있었다. 오존 처리되지 않은 활성탄소섬유의 총산도값은 0.631 meq./g인데 비하여, 1 M NaOH 수용액을 개시제로 오존 처리된 활성탄소섬유는 0.762 meq./g, 1 M H2O2 수용액을 개시제로 오존 처리된 활성탄소섬유는 0.824 meq./g로 증가하였고, 특히 phenol그룹이 크게 증가하였다. NaOH로 처리하면 phenol그룹만 증가하였고, H2O2로 처리하면 phenol그룹이 많이, carboxyl그룹이 약간 증가하였다.
The oxygen and the hydrogen contents of activated carbon fibers increased from 17.0 wt% and 1.9 wt% to 22.4 wt% and 2.7 wt% by oxidation with ozone in liquid phase. The amount of functional groups and total acidity could be controlled with initiators of ozone decomposition reactions. The total acidity of ACF ozone treated in NaOH solution and H2O2 solution increased to 0.762 meq./g and 0.824 meq./g respectively, while that of non-treated ACF was 0.631 meq./g, and particularly the phenolic group increased. The phenolic group only was developed when ACF was treated in NaOH solution, large amount of phenolic group and some carboxylic group were developed when ACF was treated in H2O2 solution.
[References]
  1. Donnet JB, Wang TK, Rebouillat S, Peng JCM, Carbon Fibers, 3rd edition, Marcel Dekker, New York, 1998
  2. Tomiyasu H, Fukutomi H, Gordon G, Inorg. Chem., 24, 2962, 1985
  3. Glaze WH, Environ. Sci. Technol., 21, 224, 1987
  4. Glaze WH, Kang JW, Ind. Eng. Chem. Res., 28(11), 1573, 1989
  5. Yuteri C, Mirat DG, Ozone Sci. Eng., 10, 277, 1988
  6. Hoigne J, Staehelin J, Environ. Sci. Technol., 19(12), 1206, 1985
  7. Rodriguez-Reinoso F, Martin-Martinez JM, Prado-Burguette C, McEnaney B, J. Phys. Chem., 91, 515, 1987
  8. Barrett EP, Joyner LG, Halenda PH, J. Am. Chem. Soc., 73, 373, 1951
  9. Boehm HP, Adv. Catal., 16, 189, 1966
  10. Donnet JB, Carbon, 20, 267, 1982
  11. Kutics K, Suzuki M, 2nd Korea-Japan Symposium on Sep. Tech., Seoul, 395-402, 1990
  12. Staehelin J, Hoigne J, Environ. Sci. Technol., 16(10), 676, 1982
  13. Uuhler RE, Staehelin J, Hoigne J, J. Phys. Chem., 88, 2560, 1984
  14. Painter PC, Appl. Spectroscopy, 35, 475, 1981
  15. Silverstein RM, Bassler GC, Morrill TC, Spectrometric Identification of Organic Compounds, John Wiley & Sons, Inc., 1991
  16. Castilla MC, Marin CF, Hodar MFJ, Utrilla AJ, Carbon, 36, 145, 1998
  17. Zawadzki J, Chemistry and Physics of Carbon, 21, ed. Peter A. Thrower, Marcel Dekker Inc., New York and Basel, 1989
  18. Ryu SK, Shim JW, Park SJ, Carbon, 39, 1635, 2001
  19. Papirer E, Li S, Donnet JB, Carbon, 25, 243, 1987
  20. Park SJ, Donnet JB, J. Colloid Interface Sci., 200(1), 46, 1998
  21. Donnet JB, Carbon, 6, 161, 1968
  22. Rodivic LR, Carbon, 30, 797, 1992