Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.41, No.3, 292-300, 2003
수용액상 MEK 분리용 접촉식 분리막 시스템에 대한 물질전달계수: 실험 및 이론적 고찰
Mass Transfer Coefficient on Membrane Contactor System for Separation of MEK from its Aqueous Solution: Experimental and Theoretical Aspects
휘발성 유기 용매 중의 하나인 MEK(methyl ethyl ketone)를 수용액으로부터 평막형 접촉식 분리막을 이용하여 분리하고자 하였으며, 사용된 접촉식 분리막 장치에 대한 이론적, 실험적 총괄 물질 전달 계수를 구하고자 하였다. 회분식 분리 실험장치에 상업용 다공성, 소수성 PVDF 분리막을 설치 이용하였으며 분리막 표면 위에 형성되는 농도 분극 경계층에 대한 Sh수(Sherwood number), Re수(Reynolds number), Sc수(Schmidt number)의 관계식을 지지액막을 이용한 페놀 분리 실험을 통하여 결정하였다. 이 관계식을 사용하여 동일한 실험장치에 설치한 접촉식 분리막으로 용매를 사용 MEK를 분리하는데 필요한 이론적 총괄 물질 전달 계수를 산출하였다. 회분식 접촉식 분리막 실험 장치에 대한 실험적 총괄 물질 전달 계수를 얻기 위한 식을 도출하였으며, MEK 분리 실험 결과를 적용하여 실험적 총괄 물질 전달 계수 값을 얻을 수 있었다. 이론적 총괄 물질 전달 계수와 실험적 물질 전달 계수 값들은 같은 차수를 보여주는 범위에서 비교적 잘 일치함을 확인할 수 있었다.
MEK(methyl ethyl ketone), one of major volatile organic compounds(voc), was separated from its aqueous solution using a flat membrane contactor. The overall mass transfer coefficient was analyzed theoretically for the membrane contactor utilized and it was compared with the overall mass transfer coefficient observed experimentally. A correlation equation of Sherwood number was determined in terms of Reynolds number and Schmidt number for the concentration boundary layer which might exist on the surface of the commercially available porous PVDF membrane installed in a batch type apparatus. This correlation equation was determined experimentally from a separation experiments of phenol by a supported liquid membrane set up in the same apparatus. It was applied to estimate a theoretical overall mass transfer coefficient of MEK through the membrane contactor installed in the same apparatus. An experimental overall mass transfer coefficient could be obtained from the equation which was derived to describe the MEK separation phenomena in the batch type membrane contactor. The theoretical overall mass transfer coefficient was in good agreement with the experimental overall mass transfer coefficient in a sense that they are in the same order of magnitude.
[References]
  1. Chemical Market Research Inc., Chemical Journal, 14, 1997
  2. Korean Occupational Safety & Health Agency, MSDS, 2002
  3. Kim HK, Yi JS, Han C, Na BK, Chung Y, Song HK, HWAHAK KONGHAK, 33(2), 213, 1995
  4. Kim HK, Kim SH, Han C, Na BK, Chung Y, Song HK, HWAHAK KONGHAK, 34(2), 201, 1996
  5. Lee H, Na K, Moon I, Song HK, Na BK, HWAHAK KONGHAK, 37(2), 276, 1999
  6. Lee H, Kim J, Han C, Song HK, Na BK, HWAHAK KONGHAK, 37(1), 120, 1999
  7. Davis WT, Kim GD, Perry TC, Sep. Sci. Technol., 36(5-6), 931, 2001
  8. Chiang HL, Huang CP, Chiang PC, Chemosphere, 46(1), 143, 2002
  9. Elabd YA, Barbari TA, AIChE J., 47(6), 1255, 2001
  10. Smetana JF, Falconer JL, Noble RD, J. Membr. Sci., 114(1), 127, 1996
  11. Shim JS, Kim HS, Lee KB, Lee JK, Park BS, "Solvent Vapor Treatment Technology(I): Design of Absorption Tower," Korean Institute of Chemical Engineers, 6-1, Seoul, 1661, 2000
  12. Burgos N, Paulis M, Antxustegi MM, Montes M, Appl. Catal. B: Environ., 38(4), 251, 2002
  13. Chang MB, Chang CC, AIChE J., 43(5), 1325, 1997
  14. Geankoplis CJ, Mass Transfer Phenomena, Holt, Rinehart and Winston, Inc., New York, NY, 1972
  15. Yun CH, Prasad R, Sirkar KK, Ind. Eng. Chem. Res., 31(7), 1709, 1992
  16. Utriaga AM, Ortiz MI, Salazar E, Ind. Eng. Chem. Res., 31(3), 877, 1992
  17. Marangozis J, Johnson AI, Can. J. Chem. Eng., 231, 1962
  18. Bird RB, Stewart WE, Lightfoot EN, Transport Phenomena, John Wiley & Sons, New York, NY, 1960
  19. Reid RC, Prausnitz JM, Poling BE, The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York, NY, 1987
  20. Dean JA, Lange's Handbook of Chemistry, 14th ed., McGraw-Hill, New York, NY, 1992
  21. Ahn H, Lee Y, Yoon IJ, Kim M, Membr. J., 8(4), 228, 1998
  22. Perry RH, Chilton CH, Chemical Engineers' Handbook, 5th ed., McGraw-Hill Kogakusha, Tokyo, 1973