Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.35, No.5, 621-626, 1997
고체염기성촉매를 이용한 페놀로부터 아니졸의 합성
Synthesis of Anisole from Phenol by Using a Solid Base Catalyst
Cs이 담지된 제올라이트-X촉매를 사용하여 200-300℃의 상압기상반응조건하에서 phenol과 methanol로부터 anisole을 합성하였다. 산성고체촉매 혹은 액상에서 용해될 수 있는 염기성을 필요로 하는 것으로 알려진 이 반응에서, Cs 담지촉매를 이용할 경우 전화율에 관계없이 100%의 선택도를 얻을 수 있었으며 전화율은 Cs의 담지방법과 담지량에 따라서 크게 차이를 보여 주었다. 담체로 사용된 제올라이트-X와 Cs이 낮은 농도로 이온교환만된 촉매에서는 4% 미만의 반응성을 보이다가 Cs의 이온교환율이 증가할수록 전화율도 같이 증가하여 최대전환율을 이루고 이온교환율이 약 50% 이상되는 촉매에서는 전화율이 10% 미만으로 낮아지고 있었다. 또한 Cs acetate 수용액을 rinsing 방법으로 처리하여 미세 Cs 산화물이 제올라이트 내부에 형성되었다고 판단되는 촉매에서는 이온교환만된 촉매보다 낮은 이온교환율에서 최대전화율을 얻을 수 있었다. 이러한 전화율의 변화 현상을 Cs 양이온 혹은 Cs 산화물의 염기촉매작용과 제올라이트 내부에서의 확산억제현상에 의하여 설명할 수 있었다.
The gas phase synthesis of anisole from phenol by using a solid base catalyst was carried out in the temperature range of 200-300℃ and 1 atm. The reaction, which was usually carried out with solid acid catalysts in the gas phase or base catalysts in the liquid phase, was catalysed by Cs-loaded zeolite X and the selectivity was high, almost 100% at all the investigated conditions. The reactivity was greatly affected by the preparation method and the amount of Cs loaded. The conversion showed a maximum with increasing degree of ion exchange and more than 50% in the degree, the conversion decreased to less than 10%.For the catalysts prepared by the rinsing method with aqueous Cs acetate solution and thought to be containing intrazeolitic Cs oxides in the zeolite cavities, the maximum conversion was found at a lower value of the degree of ion exchange than that of ion exchanged zeolite. The difference in the reactivity was explained by the retardation of the intraparticle mass transfer due to the blocking of the pores by the Cs.
[References]
  1. Imelik B, Naccache C, Coudurier G, Taarit YB, Vedrine JC, "Catalysis by Acids and Bases," Elsevier, Amsterdam, 1985
  2. Take J, Kikuchi N, Yoneda Y, J. Catal., 21, 164, 1971
  3. Yamanaka T, Tanabe K, J. Phys. Chem., 79, 2409, 1975
  4. Yamagata N, Owada Y, Okazaki S, Tanabe K, J. Catal., 47, 358, 1977
  5. Nakano Y, Iizuka T, Hattori H, Tanabe K, J. Catal., 57, 1, 1979
  6. Iizuka T, Endo Y, Hattori H, Tanabe K, Chem. Lett., 803, 1976
  7. Vinek H, Noller H, Ebel M, Schwarz K, J. Chem. Soc.-Faraday Trans., 73, 734, 1977
  8. Ai M, Bull. Chem. Soc. Jpn., 50(355), 2579, 1977
  9. Tanakbe K, Yoshii N, Hattori H, J. Chem. Soc.-Chem. Commun., 464, 1971
  10. Garces JM, Vrieland GE, Bates SI, Scheidt FM, "Catalysis by Acids and Bases," Elsevier, Amsterdam, 67, 1985
  11. Unland ML, Barker GE, U.S. Patent, 4,115,424, 1978
  12. Itoh H, Hattori T, Suzuki K, Murakami Y, J. Catal., 79, 21, 1983
  13. Moon SK, Kim HJ, Seo KT, Paek SW, HWAHAK KONGHAK, 25(6), 601, 1987
  14. Martens LRM, Grobet PJ, Vermeiren WJM, Jacobs PA, Stud. Surf. Sci. Catal., 28, 935, 1986
  15. Hathaway PE, Davis ME, J. Catal., 116, 263, 1989
  16. Hathaway PE, Davis ME, J. Catal., 116, 279, 1989
  17. Tsuji H, Yagi F, Hattori H, Chem. Lett., 1881, 1991
  18. Kim JC, Li HX, Chen CY, Davis ME, Microporous Mater., 2, 413, 1994
  19. Solomons TWG, "Organic Chemistry," second edit., John Wiley & sons, N.Y., 681, 1980
  20. Tanabe K, "Catalysis by Acids and Bases," Elsevier, Amsterdam, 1, 1985
  21. Tleimat-Manzalji R, Bianchi D, Pajonk GM, Appl. Catal. A: Gen., 101, 339, 1993
  22. Bautista FM, Campelo JM, Garcia A, Luna D, Marinas JM, Romero A, Navio JA, Macias M, Appl. Catal. A: Gen., 99, 161, 1993