Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.41, No.2, 192-201, 2003
50 kW급 인산형 연료전지 발전 시스템의 전산모사 및 제어구조 설계
Flow Sheet Simulation and Control Structure Design for a 50 kW Phosphoric Acid Fuel Cell System
연료전지는 대체발전 시스템으로 매우 높은 관심의 대상이 되고 있음에도 불구하고, 이제까지 대부분의 연구는 전극물질의 개발과 스택의 설계에 국한 되어왔다. 간혹 개질기와 스택을 포함한 전 공정의 최적설계에 대한 연구결과가 보고되었으나, 제어계 설계에 관한 연구결과는 거의 발표된 바가 없다. 본 연구에서는 상업용 공정모사기인 HYSYS를 이용한 정상상태 수치모사를 바탕으로 50kW급 인산형 연료전지 시스템의 제어계 설계를 수행하였다. 연료전지 제어계 설계에서 먼저 문제가 되는 것은 최외곽 제어루프에서 어느 공정변수를 제어할 것인가 하는 것이다. 본 연구에서는 다양한 모사실험을 통하여 수소 이용률을 피제어변수로 선택할 것을 제안하였다. 이때 수소 이용률은 측정이 불가능하므로 이를 추정하는 예측모델을 함께 제안하였다. 이 제어루프를 근거로, 대상으로 한 인산형 연료전지 시스템의 제어구조를 제안하였다.
Despite the keen and continuous interest in the fuel cell system as an alternative electricity generation system, the research has been confined mostly to the electrode material development and stack design. Sometimes, optimal design of the integrated system has also been reported. On the other hand, research on control system design has been scarcely presented even though a fuel cell system may be subject to frequent load change during operation. In this study, a control system structure for a 50kW PAFC (Phosphoric Acid Fuel Cell) system has been presented based on steady state simulation studies using the commercial flow-sheet simulator, HYSYS. The prime difficulty encountered in the fuel cell control system design against load change is that it is not clear which process variable should be regulated in the primary control loop. In this study, through extensive simulation study, the hydrogen utilization ratio has been chosen as a regulation variable for the primary control loop. Since the hydrogen utilization ratio cannot be measured directly, an inference model is devised and proposed, too. On the basis of the concept of the primary control loop, the control structure for the whole PAFC system has been suggested.
[References]
  1. Blomen L, Mugerwa M, Fuel Cell Systems, Kluwer Academic Pub., New York, 1994
  2. Whitaker R, J. Power Sources, 71(1-2), 71, 1998
  3. Kasahara K, Morioka M, Yoshida H, Shingai H, J. Power Sources, 86(1-2), 298, 2000
  4. LG-Caltex Oil Co. Ltd., "Research for Development of Stack & Operating Technology of 50 kW PAFC," Ministry of Commerce, Industry and Energy, 179-198, 2000
  5. Kortbeek PJ, de Ruijter JAF, van der Laag PC, Hagg F, Barten H, J. Power Sources, 71(1-2), 278, 1998
  6. Yang JC, Seo SH, Park YS, Seo HS, Lee HJ, "Development of a 50 kW PAFC Power Generation System," Fuel Cell Symposium, 9, 71, 2002
  7. Yang JC, Park YS, Seo SH, Lee HJ, Noh JS, J. Power Sources, 106(1-2), 68, 2002
  8. Hou KH, Hughes R, Chem. Eng. J., 82(1-3), 311, 2001
  9. Larminie J, Dicks A, Fuel Cell Systems Expained, John Wiley & Sons Ltd., Chichester, 2000
  10. Lee JS, "Simulation and Consist of Control Algorithm for 50 kW PAFC," a Master's Thesis of Sogang University, 2002
  11. Lee KS, Kim J, Lee JS, "Modeling of Stack," Fuel Cell Symposium, 8, 215, 2001