Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.35, No.5, 591-598, 1997
ASC-Whetlerite 활성탄의 노화특성에 관한 연구
Deactivation Study of the ASC-Whetlerite Activated Carbon
온도, 습도, 열 및 환원성 가스에 대한 ASC-Whetlerite 활성탄의 특성과 노화영향을 분석하고 CNCl의 파괴시험을 통하여 이들 시료의 흡착성능을 비교하였다. 실험 노화조건(온도 72℃, 상대습도 80%에서 14일간 노화)에서 노화된 시료의 비표면적과 기공부피는 노화전 시료와 비교하여 뚜렷이 감소하지 않았으나, 노화시간이 경과함에 따라 CNCl 파괴시간과 Cr(VI)가 점차 감소하였다. 노화전 시료를 N2와 H2로 열처리하면 Cu 화합물의 결정이 성장하였으며 Cr의 산화상태가 현저히 변화하였다. 250℃의 N2 분위기에서 열처리한 시료의 담지입자 크기는 5 ㎚에서 약 15 ㎚까지 증가하였으며, 수소 환원시료에서는 Cu(0)와 Cu-화합물이 발견되었다. CNCl 파괴시간은 Cr(VI)의 감소에 따라 감소함으로써 ASC 활성탄의 노화상태는 Cr(VI)를 측정하여 예측할 수 있었다. 온, 습도의 영향으로 노화된 활성탄은 180∼220℃에서 공기로 산화하여 Cr(VI)를 노화전 시료의 97%까지 회복시킬 수 있어 재생가능함을 알 수 있었다.
The characteristics and aging effects on temperature, humidity, heat and reducing gas for the ASC-whetlerite activated carbon were studied. The adsorptive capacities for the samples were compared through the breakthrough test of CNCl. There was no significant reduction of the total surface area and pore volume of the aged charcoal at the experimental condition (72℃ and 80% RH for 14 days). However, the breakthrough time of CNCl and Cr(Ⅵ) of the samples were gradually decreased with aging times. Thermal-treatments of the fresh sample with N2 and H2 involve growth of crystallites of copper compounds and the change of oxidation states of chromiums significantly. The impregnant size of the heat-treated sample with N2 at 250℃ was increased to 15nm from 5nm and metallic copper and compper compounds were found in a reduced sample. The breakthrough time of CNCl decreased as Cr(Ⅵ) decreased. Thus the aging states of ASC carbons could be characterized by measuring Cr(Ⅵ). The aged samples could be regenerated by restoring Cr(Ⅵ) up to 97% of the fresh sample by air oxidation at 180-220℃.
[References]
  1. Grabenstetter RJ, Blacet FE, "In Military Problems with Aerosols and Non-Persistent Gases," Summary Technical Report of the National Defense Research Committee, Washington D.C., U.S.A., 1946
  2. Blacet FE, Grabenstetter RJ, U.S. Patent, 2,920,050, 1960
  3. Bradley RH, Appl. Surf. Sci., 90, 271, 1995
  4. Pytlewski LL, "Studies of ASC Whetlerite Reactivity," Edgewood Arsenal Contract Report, AD 774835, 1974
  5. Brown PN, Jayson GG, Thompson G, Wilkinson MC, Carbon, 27, 821, 1989
  6. Hjermstad HP, Berg R, Am. Ind. Hygiene Assoc. J., 38, 211, 1977
  7. Brown PN, Jayson GG, Thompson G, Wilkinson MC, J. Colloid Interface Sci., 116, 211, 1987
  8. Deitz VR, Robinson JN, Poziomek EJ, Carbon, 13, 181, 1975
  9. Krishnan PN, Katz SA, Birenzvige A, Salem H, Carbon, 26, 914, 1988
  10. Biron E, Stavisky R, Carbon, 33, 1413, 1995
  11. Ross MM, Colton RJ, Deitz VR, Carbon, 27, 426, 1989
  12. Hammarstrom JL, Sacco A, J. Catal., 100, 293, 1986
  13. Hammarstrom JL, Sacco A, J. Catal., 112, 267, 1988
  14. Dolian FE, Hormats S, U.S. Patent, 2,963,441, 1960
  15. Baker JA, Poziomek EJ, Carbon, 12, 45, 1974
  16. Platz RM, Yeh A, Semaru KT, Jones JL, "Teda-ASC Whetlerite Carbon Study," CRDEC-CR-035, U.S. Army CRDEC, Aberdeen, MD, U.S.A., 1990
  17. 이정민, 고재천, 진항교, 박병기, "활성탄 화학침윤 처리연구," 한국화학연구소, 1990
  18. Yang JK, Lee HW, Yang YS, 7th Int'l Simulant Workshop Proceedings, ERDEC, U.S.A., 1993
  19. Holdway DA, "Chromium in the Natural and Human Environments," Nriagu, J.O. and Nieboer, E., Eds., John Wiley & Sons, NY, 1988
  20. Rossin JA, Morrison RW, Carbon, 29, 887, 1991
  21. Deitz VR, Karwacki CJ, Carbon, 32, 703, 1994
  22. Klich PS, Tolles ED, "Manufacturing Methods and Technology: Impregnated Charcoal," CRDEC-CR-85011, CRDEC, APG, U.S.A., 1985
  23. 이종철, 양용식, 양재규, 한국폐기물학회지, 14(1), 1, 1997
  24. U.S. Army Edgewood Aresnal, "Instruction Manualfor the Installation, Operation and Maintenance of All Purpose Apparatus, Gas Life Testing, Z95," 136-300-198B, 1964
  25. Berg R, Gulbrndsen AH, Neefjes GA, Ref. Port. Quim., 19, 378, 1977
  26. Bac N, Hammarstrom JL, Sacco A, Carbon, 25, 545, 1987
  27. Ehrburger P, Henlin JM, Lahaye J, J. Catal., 100, 429, 1986