Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.35, No.4, 557-564, 1997
오염된 다공성 지하에서 화학적 오염물의 이동에 관한 연구
A Study on the Chemical Transport through Contaminated-Porous Grounds
침출수에 의한 폐기물 매립지 근처의 지하 환경의 오염 및 대처 방안의 효과를 수치적으로 해석하였다. 다공성 지하에서 Darcy 법칙을 만족하는 침출수의 흐름에 대하여, 오염물질의 이동은 이산-분산 모델에 수착의 효과를 부가하여 예측하였다. 이를 위하여 2차원계에 대한 침출수의 유동 및 오염물질의 전달현상을 Galerkin 유한 요소법을 사용하여 해석하였다. 해석 결과 침출수의 흐름은 매립지 제방 근처에서 강하게 일어나는 것으로 나타났다. 오염물의 전달을 지연하기 위한 방안으로의 연직 차수막과 표면 차수막을 채택하여 오염물의 오염 현황을 예측하였다. 연직 차수막은 오염물질의 이동을 지연시키는데 있어 큰 효과를 기대할 수 없으나, 표면 차수막의 경우 차수막의 투수계수가 작을수록 차수막 하부로의 오염물 이동이 강하게 억제됨을 알 수 있었다. 한편, 토양의 수착능은 오염물질의 이동을 지연시키는데 상당한 효과가 있는 것으로 나타났다.
The leachate contamination of the ground environment and its preventive issues around the waste landfill site have been analysed using the numerical analysis. For the Darcian flow of leachate in porous grounds, the transport of chemical contaminants was predicted on the basis of the advection-dispersion model including the sorption effect. The Galerkin finite element method was adopted in order to characterize the 2-dimensional system involving both the flow of leachate and the transport of contaminants in the leachate. It is shown that the leachate flows strongly under the dam of the landfill. The effects of the vertical liner and the horizontal one instrumented on the waste landfill site for the retardation of the chemical transports were examined simultaneously. It is seen that the vertical liner is not proper to retard the transport of contaminants in the leachate. The horizontal liner, however, retards the transport in the direction of gravitational force. And the capacity of the sorption of soils was expected to make retardation rather than the liners.
[References]
  1. Freeze RA, IBM J. Res. Develop., 16, 117, 1972
  2. Konikow LF, Bredehoeft JD, Water Resour. Res., 10, 546, 1974
  3. Robson SG, "Water-Resources Investigations," Geological Survey, Menlo Park, Ca., 46, 1974
  4. Robertson JB, Barraclough JT, Proc. Symp. Underground Waste Management and Artificial Recharge, America Assoc. Petroleum Geologists, New Orleans, 1, 291, 1973
  5. Pinder GF, Water Resour. Res., 9, 1657, 1973
  6. Pickens JF, Lennox WC, Water Resour. Res., 12, 171, 1976
  7. 환경처, 한국환경년감, 서울, 1992
  8. Millington RJ, Quirk JP, Trans. Faraday Soc., 57, 1200, 1901
  9. Freeze RA, Cherry FA, "Groundwater," Prentice Hall, New Jersey, 1979
  10. Schcidegger AE, J. Geophys. Res., 66, 3278, 1961
  11. Bear J, "Dynamics of Fluids in Porous Media," American Elsevier, New York, 1972
  12. Neuman SP, Water Resour. Res., 26, 1749, 1990
  13. 수도권 매립지 운영 관리 조합, 수도권 매립지 종합 환경조사 연구 보고서, 1993
  14. Istok J, "Groundwater Modelling by the Finite Element Method," American Geophysical Union, Washington D.C., 1989
  15. Bear J, Bachmat Y, "Introduction to Modeling of Transport Phenomena in Porous Media," Kluwer Academic Publishers, Dordrecht, 1990