Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.35, No.4, 526-531, 1997
글루타치온 생산 재조합 대장균의 고농도 배양에 관한 연구
Studies on the High Cell Density Cultivation of Glutathione-Producing Recombinant Escherichia coli
본 연구에서는 재조합된 대장균을 이용하여 글루타치온을 생산하기 위해 필요한 균체의 대량생산에 대한 실험을 수행하였다. 고농도의 균체를 얻기 위해 선택한 배양방법은 유가식배양이며, 기질은 미생물이 가지는 특정비생장속도를 일정하게 유지하면서 공급하였다. 상이한 비생장속도에서 수행된 실험에서 비생장속도 0.3hr-1에서 미생물의 균체농도는 147(OD600)으로 가장 높았지만 목적물질인 글루타치온 생합성효소는 비생장속도 0.1hr-1에서 130unit/L로 더욱 높았다. 또한 비생장속도 0.4hr-1에서는 초기부터 포도당이 과량축적되었으며, 축적된 포도당으로 인해 생긴 아세트산으로 미생물의 생장과 목적물질인 글루타치온의 생성이 현저하게 감소함을 확인할 수 있었다. 이것은 글루타치온 생산 재조합 대장균의 임계 비생장속도(critical specific growth rate)이상에서 배양할 경우 과도한 metabolic burden으로 인해 생성된 것으로 사료된다.
High cell density cultivation of glutathione-producing recombinant E. coli TG1/pDG7α was carried out in a fed-batch mode controlling specific growth rate. The cell growth and the production of GSH-I were not affected by the initial glucose concentration less than 20g/L. The specific growth rate sharply increased for the yeast extract concentration less than 1g/L. The cell growth rate and the GSH-I production rate were lowered significantly at the initial concentration of acetic acid above 5g/L. The cell growth and the GSH-I production were inhibited by acetic acid. The final cell concentration reached its maximum at 147(OD600) with μ=0.3hr-1. The final concentration of GSH-I reached 134 unit/L with μ=0.1hr-1. When the specific growth rate was controlled at 0.4hr-1, the final cell concentration decreased drastically due to the accumulation of acetic acid in the medium, which resulted in the decrease of the concentration of GSH-I.
[References]
  1. Nam YS, Ph.D. Dissertation, Korea Univ., Seoul, Korea, 1990
  2. Tietze F, Anal. Biochem., 27, 502, 1969
  3. Luli GW, Strohl WR, Appl. Environ. Microbiol., 56, 1004, 1990
  4. Han KH, Lim HC, Hong JA, Biotechnol. Bioeng., 39, 663, 1992
  5. Gschaedler A, Boudrant J, J. Ind. Microbiol., 13, 225, 1994
  6. Jensen EB, Carlsen S, Biotechnol. Bioeng., 26, 1, 1990
  7. Seo DJ, Chung BH, Hwang YB, Park YH, J. Ferment. Bioeng., 74, 196, 1990
  8. Konstantinov KB, Kishimoto M, Seki T, Yoshida T, Biotechnol. Bioeng., 36, 750, 1990
  9. Mori H, Yano T, Kobayashi T, Shimizu S, J. Chem. Eng. Jpn., 12, 313, 1979
  10. Sakamoto S, Iijima M, Matsuzawa H, Ohta T, J. Ferment. Bioeng., 78(4), 304, 1994
  11. Shi Z, Shimizu K, Iijima S, Izumi R, Matsumoto K, Kobayashi T, J. Ferment. Bioeng., 73, 22, 1992
  12. Park YS, Kai K, Iijima S, Kobayashi T, Biotechnol. Bioeng., 40, 686, 1992
  13. Mizutani S, Iijima S, Morikawa M, Shimizu K, Kobayashi T, J. Ferment. Bioeng., 65, 325, 1987
  14. Shimizu N, Fujimori K, Nihimura N, Odawara Y, J. Ferment. Technol., 66, 187, 1988
  15. Risenberg D, Schulz B, Knorre WA, Pohl HD, Korz D, Sanders EA, Rob A, Deckwer WD, J. Biotechnol., 20, 17, 1991
  16. Turner C, Gregory ME, Turner MK, Biotechnol. Lett., 16(9), 891, 1994
  17. Yoon SK, Kang WK, Park TH, Biotechnol. Bioeng., 43(10), 995, 1994
  18. Paalme T, Tiisa K, Kahru A, Vanatalu K, Viliu R, Biotechnol. Bioeng., 35, 312, 1990
  19. Yee L, Blanch HW, Biotechnology, 10, 1550, 1992
  20. Lee SY, Tibtech., 14, 98, 1996
  21. Curless CE, Pope J, Loredo L, Tsai LB, Biotechnol. Prog., 10(5), 467, 1994
  22. Kwak JH, MS.D. Dissertation, Korea Univ., Seoul, Korea, 1992