Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.35, No.4, 490-496, 1997
몰리브덴인산화물에서의 3-피콜린의 가암모니아 산화반응 속도론
Kinetics of 3-Picoline Ammoxidation over Molybdenum Phosphate Catalyst
수용액상에서 물리브덴암모늄염과 인산의 반응으로 P/Mo=1.0의 비율을 가진 몰리브덴인산화물을 제조하였다. 제조한 몰리브덴인산화물을 촉매로 사용하여 상압하에서 3-피콜린의 가암모니아 산화반응을 수행하였으며 3-피콜린, 산소, 암모니아의 각각의 분압과 반응온도의 영향을 살펴보았다. 본 실험조건하에서 촉매활성은 반응 300시간까지는 계속적인 활성증가가 있었고 이후 500시간까지 안정상태를 유지하였다. 안정화 상태에서의 3-피콜린의 반응 속도식은 -r=kP3-PPNH30PO2γ[γ=0.2;0.25≤PO2(kPa)≤5 : =0;5≤PO2(kPa)]으로 3-피콜린에 대해서는 1차, 암모니아에 대해서는 0차이었으며, 산소에 대해서는 0차와 0.2차로 구간에 따라 차이가 있었다. 3-피콜린의 전환율 증가에 따라 3-시아노피리딘의 선택도가 증가하였으며 동시에 아미드와 산의 선택도는 감소하였다.
Molybdenum phosphate(P/Mo=1.0) has been synthesized with ammonium molybdate and phosphoric acid under aqueous solution. The kinetics of ammoxidation of 3-picoline over the molybdenum phosphate catalyst were investigated with the variation of reaction temperature and partial pressure of 3-picoline, oxygen, and ammonia, respectively at atmospheric pressure. The catalytic activity was increased until 300 hrs on stream and then maintained until 500 hrs on stream under our experimental conditions. At the steady-state conditions, the rate equation of 3-picoline ammoxidation was shown as -r=kP3-PPNH30PO2γ[γ=0.2;0.25≤PO2(kPa)≤5 : =0;5≤PO2(kPa)]. The correlation between the conversion of 3-picoline and the selectivity of 3-cyanopyridine had the proportional relationship. As the selectivity of 3-cyanopyridine increases, the selectivity of amide and acid decreases.
[References]
  1. Rizayev RG, Mamedov EA, Vislovskii VP, Sheinin VE, Appl. Catal. A: Gen., 83, 103, 1992
  2. Kirk-Othmer: "Encyclopedia of Chemical Technology," 3rd Edition, John Wiley and Sons, New York, NY, 15, 684, 1981
  3. Sant BR, Rao SB, Rao JR, Thakur RS, Praida KM, J. Sci. Ind. Res., 43, 543, 1984
  4. Otamiral JC, Anderson A, Catal. Today, 3, 211, 1988
  5. Otamiral JC, Anderson A, Catal. Today, 3, 223, 1988
  6. Ray S, Singh B, Choudhury A, Roy SK, Singh B, Mukherjee PM, Ind. J. Technol., 21, 461, 1983
  7. Covani F, Parrinello F, Trifiro F, J. Mol. Catal., 43, 716, 1987
  8. Ito M, Tanaka H, Matsumoto A, Bull. Chem. Soc. Jpn., 41, 716, 1968
  9. Paustian JE, Puzio JF, Stavropoulos N, Sze MC, Chemtech., 174, 1981
  10. Shin CH, Chang TS, Cho DH, Lee DK, Lee YK, HWAHAK KONGHAK, 35(2), 270, 1997
  11. Kim SH, Chon H, Appl. Catal., 85, 47, 1992
  12. Anderson A, Lundin ST, J. Catal., 58, 383, 1979
  13. Anderson A, Bovin JO, Walter P, J. Catal., 98, 204, 1986
  14. Anderson A, J. Catal., 100, 414, 1986
  15. Anderson A, Lundin ST, J. Catal., 65, 9, 1980
  16. Anderson A, J. Catal., 76, 144, 1982
  17. Reddy BN, Reddy BM, Subrahmanyam, J. Chem. Soc.-Chem. Commun., 33, 1988
  18. Reddy BN, Reddy BM, Subrahmanyam, J. Chem. Soc.-Faraday Trans., 87(10), 1649, 1991
  19. Prasad R, Kar AK, Ind. Eng. Chem. Process Des. Dev., 15(1), 170, 1976
  20. Reddy BM, Subrahmanyam, J. Chem. Soc.-Chem. Commun., 940, 1988
  21. Martin A, Lucke B, Seeboth H, Ladwig G, Appl. Catal., 49, 205, 1989
  22. Anderson A, J. Catal., 69, 465, 1981
  23. Suvorov BV, Belova NA, Gostev VI, Kinet. Catal., 34(2), 261, 1993
  24. Suvorov BV, Vorobev PB, Mikhailovskaya TP, Kinet. Catal., 34(2), 265, 1993
  25. Walton J, Eng. Sci. Data Item, 11977, 77019
  26. Suvorov BV, Int. Chem. Eng., 8, 588, 1968
  27. Gut G, Dirr G, Chem. Eng. Sci., 29, 443, 1974