Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.35, No.4, 485-489, 1997
Poly(DL-lactide-co-glycolide)를 이용한 미소구체의 제조
Preperation of Micelles Using Poly(DL-lactide-co-glycolide)
DL-Lactic acid와 glycolic acid를 촉매 Sb2O3로 환상의 DL-lactide와 glycolide를 합성하였으며, 이들을 각각 70:30, 80:20, 및 90:10의 비율로 용융중합하여 poly(DL-lactide-co-glycolide)(PLGA) 공중합체를 합성하고 물리·화학적 특성을 고찰하였다. 또한 PLGA core에 clonazepam을 함유하는 미소구체를 제조하여 약물전달시스템(Drug Delivery System : DDS) 제제로서의 그 응용 가능성을 검토하였다. PLGA 중합반응은 촉매, 온도, 시간, 용매선택 등의 조건변화에 의해서 점도, 분자량, 녹는점 등의 다양한 물성을 가진 중합체를 합성하였다. 또한 투석 방법에 의해 용이하고 균일한 크기의 PLGA 미소구체를 얻었으며, 약물의 loading양은 각각 25.4, 23.4 및 22.3%였다. 또한 PLGA의 임계미셀농도(critical micelle concentrations : CMC)값은 각각 0.049, 0.046 및 0.033mg/ml로서 이는 각각 5.15×10-7, 4.10×10-7, 그리고 2.40×10-7mole에 해당되는 값이다. In-vitro에서 약물방출실험을 한 결과, 약물방출이 지속되는 시간의 범위는 PLGA(70:30)>PLGA(80:20)>PLGA(90:10)의 순서였다. 따라서 생체분해성 고분자인 PLGA는 약물방출 지연성 및 나노파티클 크기를 갖는 미소구체로서의 응용이 기대된다.
DL-Lactide and glycolide was synthesized from DL-lactic acid and glycolic acid with Sb2O3. We investigated the physicochemical properties of poly(DL-lactide-co-glycolide)(PLGA) synthesized in the ratio of 70 : 30, 80 : 20, and 90 : 10 from these dimers, respectively. Micelles containing clonazepam in PLGA core were prepared easily and in uniform bulk by dialysis methods. We investigated its applications in the drug delivery system(DDS). PLGA properties could be obtained variably in viscosity, average molecular weight, and melting point by copolymerization methods under different conditions of catalysis, temperature, reaction time, and solvents. Micelles of PLGA were made easily and in uniform bulk by dialysis methods and its loaded drug percentages showed 25.4, 23.4, and 22.3%, respectively. Then the critical micelle concentrations(CMC) values of PLGA were 0.049(5.15×10-7), 0.046(4.10×10-7), and 0.033 mg/ml(2.40×10-7 mole). In vitro drug release experiment showed the release time of drug delayed in the order of PLGA(70 : 30) > PLGA(80 : 20) > PLGA(90 : 10). In short, biodegradable PLGA was prospected its applications probability in the micelles of delayed-action drug release and nanoparticle units.
[References]
  1. Darby RT, Koplan AM, Appl. Microbiol., 16, 900, 1968
  2. Gutch CF, Annu. Rev. Biophys. Bioeng., 4, 405, 1975
  3. Kim KY, Polym.(Korea), 5, 222, 1982
  4. Harrison JH, Am. J. Surg., 95, 3, 1985
  5. Eling B, Polymer, 23, 1587, 1982
  6. Vert M, Li SM, Spenlehauer G, Guerin P, J. Mater. Sci. Mater. Medicine, 3, 432, 1992
  7. Ann KD, Cho I, Polym.(Korea), 1(6), 253, 1977
  8. Kronenthal RL, "Polymer Science and Technology," Plenum Press, New York, 1974
  9. Chu CC, J. Biomed. Mater. Res., 19, 437, 1985
  10. Tokiwa Y, Suzuki T, Agric. Biod. Chem., 41, 265, 1977
  11. Reed AM, Gilding DK, Polymer, 20, 1459, 1979
  12. Schneider AK, U.S. Patent, 3,636,956, 1972
  13. Wasserman D, U.S. Patent, 3,375,008, 1981
  14. Reed AM, Gilding DK, Polymer, 22, 494, 1981
  15. Lundsted LG, J. Am. Oil Chem. Soc., 28, 294, 1951
  16. Mark HF, Text. Res. J., 23, 294, 1953
  17. Brown W, Schillen K, Almgren M, Hvidt S, Bahadur P, J. Phys. Chem., 95, 1850, 1991
  18. Cho CS, Na JW, Jeong YI, Kim SH, Lee YM, Sung YK, Polym.(Korea), 19(6), 926, 1995