Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.35, No.4, 476-484, 1997
알칼리 용액이 포함된 에멀션에서의 이산화탄소의 흡수반응 특성
Gas Absorption of CO2 into Emulsion with Alkaline Aqueous Solutions
평면교반조를 사용하여 대기압, 25℃에서 벤젠을 연속상, NaOH수용액을 분산상으로한 W/O 형태의 에멀션에 CO2 기체 흡수속도는 유기상에서의 CO2 용해도가 물에서보다 훨씬 크며, 또한 수용액상에서 CO2와 NaOH는 화학반응을 일으키비 때문에 연속상내 존재하는 수용액 분산상에 의해 촉진될 수 있음을 알 수 있었다. W/O 형태의 에멀션에 대한 CO2 흡수속도는 NaOH농도, 에멀션크기 및 교반속도 등과 같은 실험변수의 변화에 따라 측정하였다. 불균일 반응계에서 화학반응을 수반한 경막설로서 구한 이론값과 실험으로부터 측정한 촉진계수값은 상당히 근접함을 알 수 있었다. 또한 위 모델을 각각 준1차법과 근사법을 사용하여 검토하였다.
From experiments in a stirred cell contactor with flat gas-liquid interfaces, it is shown that the rate of mass transfer of carbon dioxide into a W/O emulsion with benzene-NaOH aqueous solution can be enhanced by the presence of small amounts of a dispersed aqueous phase in a organic phase, provided that the solubility of carbon dioxide in the organic phase is larger than in water and that chemical reaction between carbon dioxide and NaOH occurs in the aqueous phase. The rate of CO2 absorption into W/O emulsion were measured according to the change of experimental variables such as concentration of NaOH, the size of emulsion droplets, and the stirring speed. A diffusion model with a chemical reaction based on film theory in the discontinuous phase is proposed that predicts the experimentally observed enhancement factors with a reasonable accuracy. This model is also analyzed by an approximate solution and the method based on the pseudo 1st-order reaction.
[References]
  1. Noble RD, Wag JD, Bunge AL, Ion Exch. Solvent Extr., 10, 63, 1988
  2. Marr R, Kopp A, Int. Chem. Eng., 22, 44, 1982
  3. Yan N, Huang S, Shi Y, Sep. Sci. Technol., 22, 801, 1987
  4. Thien MP, Hatton TA, Sep. Sci. Technol., 23, 819, 1988
  5. Crook EH, McDonnel RP, McNully JT, Ind. Eng. Chem. Prod. Res. Dev., 14, 113, 1975
  6. Kim KS, Choi SJ, Ihm SK, Ind. Eng. Chem. Fundam., 22, 801, 1987
  7. Gehlawat JK, Sharma MM, Chem. Eng. Sci., 23, 1173, 1968
  8. Yoshida F, Tamane T, Miyamote Y, Ind. Eng. Chem. Process Des. Dev., 9, 570, 1970
  9. Linek V, Benes P, Chem. Eng. Sci., 31, 1037, 1976
  10. Alper E, Wichtendahl B, Deckwer WD, Chem. Eng. Sci., 35, 217, 1980
  11. Pal S, Sharma MM, Jrvekar V, Chem. Eng. Sci., 37, 317, 1982
  12. Janakiraman B, Sharma MM, Chem. Eng. Sci., 38, 817, 1983
  13. Mehra A, Sharma MM, Chem. Eng. Sci., 40, 2382, 1985
  14. Bruining WJ, Joosten GEH, Beenackers AACM, Hofman H, Chem. Eng. Sci., 41, 1873, 1986
  15. Mehra A, Sharma MM, Chem. Eng. Sci., 43, 1071, 1988
  16. Mehra A, Chem. Eng. Sci., 43, 899, 1988
  17. Park SW, Hong JT, Park MK, Kim SS, Kumazawa H, HWAHAK KONGHAK, 31(4), 457, 1993
  18. Bird RB, Stewart WE, Lightfoot EN, "Transport Phenomena," John Wiley and Sons, New York, 544, 1960
  19. Sada E, Kumazawa H, Chem. Eng. Sci., 37, 945, 1982
  20. Hikita H, Takatsuka T, Chem. Eng. J., 11, 131, 1976
  21. Danckwerts PV, Sharma MM, Chem. Eng., Oct., 244, 1966
  22. Wilke CR, Chang P, AIChE J., 1, 264, 1955