Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.35, No.3, 401-406, 1997
Generator Column법을 이용한 1-Octanol/Water 분배계수 측정과 Water Solubility와의 상관관계
Measurement of 1-Octanol/Water Partition Coefficient by Using Generator Column Method and Relationship between 1-Octanol/Water Partition Coefficient and Water Solubility
생물의 구성기관이나 세포에 대한 유기화합물의 영향을 연구하기 위한 필수적인 정보이며, 소수성의 척도가 되는 1-octanol/water 분배계수(Kow)를 generator column법으로 측정하였다. 본 방법의 정립을 위하여 고정상인 1-octanol상에서의 용질 농도와 이동상(1-octanol과 포화된 water)의 유속에 변화를 주어 실험하였으며, C4-C7 alcohol에 대해 Kow를 측정해 본 결과 문헌치와 4 % 미만의 편차를 보여 본 실험방법의 정확성과 재현성을 확인할 수 있었다. 이 방법으로 n-al-kane, 염소화합물과 방향족화합물의 Kow를 측정하였다. 몰부피의 증가에 따라 Kow는 모든 화합물에서 선형적으로 증가하는 경향을 보였으며, Kow와 water에 대한 포화용해도 사이의 관계를 1차 선형식으로 표현할 수 있었다.
1-Octanol/water partition coefficient (Kow) is not only an useful parameter in studying the effect of organic compounds on organs or cells of an organs but also an index of hydrophobicity, which was measured by generator column method. In the experiment, the water saturated 1-octanol and the 1-octanol saturated water were chosen as stationary and mobile phases respectively. The Kow was measured with changing concentration of the solute in stationary phase and the flow rate of mobile phase. The accuracy and reproducibility of this method were reliable since the average deviation is within 4% compared with the literature values for C4-C7 alcohol systems. Thus, the Kow of some n-alkanes, chlorinated and aromatic compounds were measured in this work. The measured Kow of these organic compounds were linearly proportional to their molar volumes and the Kow vs. water solubilities could be expressed by a first order linear equation.
[References]
  1. Wasik SP, Miller MM, Tewari Y, May W, DeVoe H, Zoller W, "Residue Reviews 85," Springer-Verlag, New York, Inc., 1983
  2. Mackay D, "Multimedia Environmental Model; The Fugacity Approach," Lewis Pub. Inc., 1991
  3. Hansch C, Leo A, "Substituent Constants for Correlation Analysis in Chemistry and Biology," Wiley, New York, 1979
  4. Pinsuwan S, Li A, Yalkowsky SH, J. Chem. Eng. Data, 40(3), 623, 1995
  5. Leo A, Hansch C, Elkins D, Chem. Rev., 71, 6, 1971
  6. Hine J, Mookerjee PK, J. Org. Chem., 40, 3, 1975
  7. Swann RL, Laskoski DA, McCall PJ, Vander KK, Dishburger HJ, "Residue Reviews 85," Springer-Verlag, New York, Inc., 1983
  8. Schwarzenbach RP, Gschwend PM, Imboden DM, "Environmental Organic Chemistry," John Wiley & Sons, Inc., 1993
  9. Fujita T, Iwasa J, Hansch C, J. Am. Chem. Soc., 86, 5175, 1964
  10. DeVoe H, Miller MM, Wasik SP, J. Res. Nat. Bur. Stand., 86, 4, 1981
  11. Woodburn KB, Doucette WJ, Andren AW, Environ. Sci. Technol., 18, 6, 1984
  12. Bidleman TF, Anal. Chem., 56, 3, 1984
  13. Braumann T, J. Chromatogr., 373, 191, 1986
  14. Sangster J, J. Phys. Chem. Ref. Data, 18, 3, 1989
  15. Han SD, Park SJ, Park SJ, HWAHAK KONGHAK, 35(1), 96, 1997
  16. Dean JA, "Handbook of Organic Chemistry," Donelly & Sons, Co., 1987
  17. Garg SK, J. Chem. Eng. Data, 38, 227, 1993
  18. Arce A, J. Chem. Eng. Data, 38, 336, 1993
  19. Saez C, Fluid Phase Equilib., 24, 241, 1985
  20. Riddick JA, Bunger EB, "Organic Solvents. Physical Properties and Methods of Purification," Wiley-Interscience, New York, 4th ed., 1986
  21. Kumaran, Benson GC, J. Chem. Thermodyn., 16, 175, 1984
  22. Cobos JC, J. Chem. Eng. Data, 37, 535, 1992
  23. Arlaguppl MI, J. Chem. Eng. Data, 37, 298, 1992