Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.35, No.3, 360-366, 1997
Oxyhydroxide 입자의 산화침전반응에 관한 연구
A Study on Oxidative Precipitation of Oxyhydroxide
황산제일철에 수산화칼륨을 침전제로 공기를 산화제로 하여 자유 pH 변화 및 고정 pH 실험법에 의하여, 공기 유속, 초기 침전제의 몰비⁨Ro⁤Fe2⁢o⁄OHo⁩ 및 반응온도의 변화에 따른 oxyhydroxide의 산화침전과정과 핵생성 산화반응속도에 관하여 알아보았다. 공기 유속, 반응온도 및 Ro값이 증가할수록 oxyhydroxide 입자의 핵생성부터 핵성장까지의 산화침전속도는 점차적으로 증가하였으며, 이때 생성물은 1 ㎛ 이하의 균일한 침상형의 α-oxyhydroxide였으며, Ro값이 작아질수록 결정 입자의 길이가 종축 방향으로 성장하였다. 핵생성의 활성화 에너지는 11.71 KJ/㏖ 이며, 공기 유속, R값 및 반응온도의 영향에 대한 핵생성 산화반응속도 상관관계식은 다음과 같다.
-dFe2⁢⁄dt ⁤ 1.69 ⁓104FO20.56OH1.71 exp⁨⁣11.71⁄RT⁩
The aerial oxidative precipitation and kinetics of oxyhydroxide formation from aqueous solution of ferrous sulfate with KOH as a precipitant have been studied. The influence of air flow rate, reaction temperature and initial mole ratio, Ro=[Fe2+]o/[OH-]o, on the morphology and oxidation rate of oxyhydroxide particles and kinetics of seed formation are investigated by free pH drift and static pH experiment. The results show that the increase of air flow rate, reaction temperature and initial mole ratio increases the oxidation rate through the seed formation and seed growth on the free pH drift experiment. Needle-like α-oxyhydroxide particle of submicron size was obtained. When Ro value was decreased the particle was grown to longitudinal direction. The activation energy of seed formation is 11.71KJ/mol and rate equation of seed formation can be written as follows:
-d[Fe2+]/dt=1.69×104[Fo2]0.56[OH-]1.71exp(-11.71/RT)
[References]
  1. Leskela, Thermochim. Acta, 77(1-3), 177, 1984
  2. Kinoshita, Noboru, Japan Patent, 04238818, A2, 1992
  3. 설수덕, 성주경, 황용길, 대한화학회, 21(2), 121, 1977
  4. Jang HD, Park KY, Choi CS, Korean J. Chem. Eng., 13(6), 573, 1996
  5. Mackenzie RC, Meldau, Miner. Mag., 32, 163, 1959
  6. Feitknecht W, Michaelis W, Helv. Chim. Acta, 45, 212, 1962
  7. VanOosterhout GW, Acta Crystallogr., 13, 932, 1960
  8. Atkinson RJ, Posner AM, Quirt JP, J. Inorg. Nucl. Chem., 30, 2371, 1968
  9. Matijevic E, Accounts Chem. Res., 22, 14, 1981
  10. Schwertmann U, Iron Oxides in the Laboratory, VCH, Weinheim, 1991
  11. Kiyama M, Bull. Inst. Chem. Res. Kyoto Univ., 64, 4, 1986
  12. Misawa T, Zairyo, 19(201), 537, 1970
  13. Belsa MA, Mater. Sci. Forum, Trans. Tech. Aadermannsdorf Switz, 28, 31, 1988
  14. Kiyama M, Bull. Chem. Soc. Jpn., 46(1), 323, 1973
  15. Hashimoto K, Sato T, Toda Y, Yogyo Kyokaishi, 86(9), 381, 1978
  16. Park YD, Lee HH, Kim TO, J. Korean Ceram. Soc., 32(12), 1501, 1994
  17. Sugimoto T, Matijevic E, J. Colloid Interface Sci., 74(1), 227, 1980
  18. Kiyama M, Bull. Chem. Soc. Jpn., 47(7), 1646, 1974
  19. 신회덕, 조동성, 오재현, 대한광산학회, 25(5), 340, 1988
  20. Pelino M, Toro L, Petroni M, J. Mater. Sci., 24(2), 409, 1989
  21. Yamaguchi T, Kimura T, J. Am. Ceram. Soc., 59(7-8), 333, 1976
  22. Goss CJ, Miner. Mag., 51(361), 437, 1987
  23. Kwon GW, Yoon BJ, HWAHAK KONGHAK, 34(3), 288, 1996
  24. Lee JS, Rho S, Kim JD, HWAHAK KONGHAK, 27(5), 613, 1989
  25. Domingo C, Rodriguez-Clemente R, Mater. Res. Bull., 26, 47, 1991
  26. Domingo C, Solid State Ion., 59, 187, 1993
  27. Rodriguez-Clemente R, Colloids Surf. A: Physicochem. Eng. Asp., 79(23), 177, 1993
  28. Fumin R, Beijing Huagong Xueyuan Xuebao, Ziran Kexueban, 19(2), 50, 1992
  29. Kotowski, Therm. Treat. Radioact., Hazard. Chem., Mixed Med., Wastes, Proc. Incineration Conf., 11th, 81, 1992
  30. Wenzhong L, Huagong Yejin, 11(1), 27, 1990
  31. Misawa T, Hashimoto K, Corros. Sci., 14(2), 131, 1974
  32. Park KY, HWAHAK KONGHAK, 34(2), 253, 1996
  33. Park KY, Oh EK, Kim SG, Jang HD, HWAHAK KONGHAK, 34(4), 534, 1996