Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.35, No.2, 289-295, 1997
백금담지 관벽반응기(TWR)에서 CO 산화반응에 대한 해석
Analysis of CO Oxidation over Pt Catalyst Supported by Tube Wall Reactor(TWR)
알루미늄관 내벽을 양극산화시켜 γ-알루미나인 산화피막으로 만들었다. 생성된 피막에 백금을 담지시켜 CO 산화반응을 위한 관벽반응기(TWR)로 사용하였다. TWR에서의 수학적인 지배식은 에너지와 물질수지식을 couple시켜 만들었고, 수학적으로 구해진 이론값을 실제 실험값과 비교하였다. 반응물의 유속과 TWR의 길이 및 온도에 따라 실험된 전화율이 수치 모사된 값과 비슷하였다. 그러나 유속이 500-700ml/min일 때 실험값은 이론값에 약간의 차이를 보였다. 이러한 현상은 반응물이 충분한 접촉시간을 갖지 못하기 때문에 속도론적 저항보다는 확산저항에 지배됨을 알 수 있었다.
The γ-alumina layer was formed inside the aluminum tube by anodization. After platinum was precipitated on the oxide film layer, the aluminum tube was used as a tube wall reactor(TWR) for CO oxidation. The mathematical model was developed from energy balance coupled with mass transfer. The experimental values were compared with the theoretical values obtained from the simulation. The observed conversion was similar to the simulated one with the flow rate of reactants, TWR length and temperature. But when the flow rates were 500-700ml/min, the experimental values showed slight deviation from the theoretical values. This phenomenon could be related to the insufficient contact time of gaseous reactants. It could come to a conclusion that the conversion was more restricted by diffusion limitation rather than by kinetic resistance.
[References]
  1. Baron T, Manning WR, Johnstone HF, Chem. Eng. Prog., 48, 125, 1952
  2. Trillat JJ, Tertain R, Rev. Aluminium, 26, 315, 1949
  3. Paolini G, Masacro M, Sacchi F, Paganelli M, J. Electrochem. Soc., 112, 32, 1965
  4. Heber KV, Electrochim. Acta, 23, 127, 1978
  5. Tiltscher H, Wolf H, Jager W, Dialer K, Chem. Ing. Tech., 53, 363, 1981
  6. Ruckenstein E, Malhotra ML, J. Catal., 41, 303, 1976
  7. Chu YF, Ruckenstein E, J. Catal., 41, 384, 1976
  8. Rai KN, Ruckenstein E, J. Catal., 40, 117, 1976
  9. Park SD, Lee IW, Choi MJ, Hong SI, HWAHAK KONGHAK, 30(5), 571, 1992
  10. Katz S, Chem. Eng. Sci., 10, 202, 1959
  11. Schel RR, Weber JK, Kuchta MJ, Haynes WP, Ind. Eng. Chem. Process Des. Dev., 16, 227, 1977
  12. Senkan SM, Evans LB, Howard JB, Ind. Eng. Chem. Process Des. Dev., 15, 184, 1976
  13. Bird RB, Stewart WF, Lightfoot EN, "Transport Phenomena," John Wiley & Sons, New York, 1960
  14. Song X, Schmidt LD, Aris R, Chem. Eng. Sci., 46, 1203, 1990
  15. Yoo BK, Choi MJ, Lee IW, Hong SI, HWAHAK KONGHAK, 27(6), 833, 1989
  16. Keller F, Hunter MS, Robinson DI, J. Electrochem. Soc., 100, 411, 1953
  17. Campbell CT, Ertil G, Kuipers H, Segner J, J. Chem. Phys., 73, 5862, 1980
  18. Voltz SE, Morgan CR, Liederman D, Iacoh SM, Ind. Eng. Chem. Prod. Res. Dev., 12, 294, 1973
  19. Harrison W, Ernst WR, Combust. Sci. Technol., 19, 31, 1978