Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.35, No.2, 282-288, 1997
가압 기체-고체 유동층에서 내부열원과 유동층간의 열전달
Immersed Heater-to-Bed Heat Transfer in a Pressurized Gas-Solid Fluidized Bed
가압 기체-고체 유동층의 열전달 특성을 연구하고자 직경이 0.15m이고 높이가 3.58m인 스테인레스 스틸로 제작된 가압유동층에서 내부열원과 유동층간의 열전달 특성을 고찰하였다. 주요 실험변수로는 유동층의 압력과 온도 그리고 기체의 유속을 선정하였으며 이들 변수들이 가압유동층 내부열원과 유동층 내부 영역간의 국부열전달계수와 총괄열전달계수에 미치는 영향을 검토하였다. 가압 기체-고체유동층에서 압력이 증가할수록 국부열전달계수는 유동층의 높이 증가에 따라 더 빨리 일정한 값으로 수렴해 갔으며, 압력의 증가는 열적 안정성에 효과적인 영향을 미치는 것으로 나타났다. 가압유동층에서 총괄 열전달계수는 온도와 압력이 증가할수록 증가하였으며 기체유속이 증가함에 따라 최대값을 나타내었다. 가압유동층에서 총괄 열전달계수는 다음과 같이 무차원군의 상관식으로 나타낼 수 있었다.
Nu=0.083Pr0.33Pd0.08
Nu=0.105Pr0.31Re0.11
Heat transfer characteristics between the immersed heater and the bed were investigated in a pressurized gas-solid fluidized bed of 0.15m ID and 3.58m in height. Effects of operating pressure and temperature and gas flow rate on the local and overall immersed heater-to-bed heat transfer coefficient were examined. The increase of operating pressure can contribute to the thermal stability of the pressurized gas-solid fluidized bed. The local heat transfer coefficient increased and approached a almost constant value along with the height in the heater zone, and the convergence occurred more early with an increase in the pressure. The overall heat transfer coefficient increased with increasing operating temperature and pressure, but it exhibited its maximum value with the variation of gas flow rate. The heat transfer coefficient was well correlated in terms of dimensionless groups as
Nu=0.083Pr0.33Pd0.08
Nu=0.105Pr0.31Re0.11
[References]
  1. 송병호, 강용, 서용철, 진경태, 손재익, 김상돈, 화학공학의 응용과 이론, 2(1), 833, 1996
  2. Song BH, Kang Y, Seo YC, Jin GT, Son JE, Kim SD, HWAHAK KONGHAK, 34(5), 619, 1996
  3. Degang R, Baosheng J, Mingyao Z, "Fluidized Bed Combustion," ASME, 1233, 1991
  4. Shiao SY, Warchol JJ, Botros PE, "Fluidized Bed Combustion," ASME, 1183, 1991
  5. Wallman PH, Carlsson RCJ, "Fluidized Bed Combustion," ASME, 1517, 1991
  6. Shen X, Zhou N, Xu Y, J. Southeast Univ., 20(2), 29, 1990
  7. Lee YW, Son JE, Chem. Ind. Technol., 13(1), 53, 1995
  8. Chiba S, Kawabata J, Chiba T, "Encyclopedia of Fluid Mechanics," Cheremisinoff, n.P., ed., Gulf Publishing Co., 4-2, 929, 1986
  9. Grewal NS, "Encyclopedia of Fluid Mechanics," Cheremisinoff N.P. ed., Gulf Pub. Co., 4-2, 647, 1996
  10. Molerus O, Schweinzer J, Proc. 9th Interational Conf. on Fluidized Bed Combustion, 624, 1987
  11. Bouratoua R, Molodtsof Y, Koniuta A, "Fluidized Bed Combustion," ASME, 63, 1993
  12. Verloop WC, Boersma D, Vanden Akker HEA, Hein KRG, "Fluidized Bed Combustion," ASME, 53, 1993
  13. Carpenter L, Langan W, Dellefield R, Nelkin G, Hand T, "Fluidized Bed Combustion," ASME, 467, 1991
  14. Figliola RS, "Mixed-Flow Hydrodynamics," Cheremisinoff, N.P. ed., Gulf Co., 647, 1996