Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.35, No.2, 249-254, 1997
열플라즈마에 의한 질화알루미늄 초미립자의 제조
Synthesis of Ultra-fine Powders of AIN by Thermal Plasma
열플라즈마에 의해 알루미늄 덩어리를 증발시켜 질화알루미늄 초미립자를 합성하였다. 열플라즈마에 의해 해리된 질소 원자 또는 질소 분자가 급속히 용융 알루미늄 속으로 용해되고, 과포화된 질소는 다량의 알루미늄 증기를 동반하여 외부로 방출하게 된다. 이때 증발된 알루미늄과 주위의 반응가스와의 반응에 의하여 질화알루미늄이 합성된다. 반응가스로서 질소와 암모니아를 온도가 다른 여러 위치에서 주입시켜 전환율을 비교하였다. 암모니아를 저온영역에 주입시킬 때 반응률이 향상되었고, 이러한 원인은 질화알루미늄의 생성자유에너지를 근거로 하여 해석되었다. 합성된 분말은 평균 30nm의 균일한 입경을 갖는 질화알루미늄 초미립자로 관찰되었다.
Ultrafine powders of aluminum nitride were synthesized by evaporating Al bulk in thermal plasma. Atomic nitrogen dissociated and molecular nitrogen activated in thermal plasma are dissolved quickly in molten Al, subsequently super-saturated nitrogen is evolved with Al vapor. Then AIN powders were synthesized by the reaction of Al vapor and atmospheric reactant gas. The reactant gases of N2 and NH3 were injected in different temperature regions in order to compare the conversion of Al into AIN. It was observed that when ammonia gas was injected in low temperature region, reactivity was increased and this result was demonstrated by Gibbs’ free energy of AIN formation. Synthesized powders were well distributed ultrafine powders of AIN with mean diameter of 30nm.
[References]
  1. Agcorges H, Megy S, Chang K, Baronnct JM, Williams JK, Chapman C, Plasma Chem. Plasma Process., 13, 613, 1993
  2. Hotta N, Kimura I, Saito A, Matsuo S, Seramikkusu Ronbunshi, 95, 274, 1987
  3. Kuramoto M, Taniguchi H, Aso I, Am. Ceram. Soc. Bull., 68, 883, 1989
  4. Tsuge A, Inoue H, Kasori M, Shinozaki K, J. Mater. Sci., 25, 2359, 1990
  5. Riedel R, Gaudl K, J. Am. Ceram. Soc., 74, 1331, 1991
  6. Kumura I, Ichiya K, Ishii M, Hotta N, J. Mater. Sci. Lett., 8, 303, 1989
  7. Weimen AW, Cochran GA, Eisman GA, Henley JP, Aerosol Sci. Technol., 19, 491, 1993
  8. Chang AJ, Rhee SW, Baik S, J. Mater. Sci., 30(5), 1180, 1995
  9. Adiaottor A, Griffin GL, J. Am. Ceram. Soc., 75, 3209, 1992
  10. Watari T, Akizuki T, Ikeda H, torikai T, Matsuda O, J. Ceram. Soc. Jpn. Int. Ed., 97, 851, 1989
  11. Ageorges H, Megy S, Chang K, Baronnet JM, Williams JK, Chapman C, Plasma Chem. Plasma Process., 13(4), 613, 1993
  12. Zhu CW, Zhao GY, Revankar VVS, Hlavacek V, J. Mater. Sci., 27, 2211, 1992
  13. Etema K, Plasma Chem. Plasma Process., 11, 41, 1991
  14. Itatani K, Sano K, Howell FS, Kishioka A, Kinoshita M, J. Mater. Sci., 27, 1631, 1993
  15. Uda M, Ohno S, Okuyama H, Yogyo-Kyokai-Shi, 95, 86, 1987
  16. Baik Y, Shanker K, McDermid JR, Drew RAL, J. Am. Ceram. Soc., 77, 2165, 1994
  17. Nickle KG, Riedel R, Petzow G, J. Am. Ceram., 72, 1804, 1989
  18. Bolin I, "Thermochemical Data of Pure Substances," VCH, 1993