Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.35, No.2, 243-248, 1997
유동층 반응기에서 고분자 입자의 산소 플라즈마 표면 개질 - 고밀도 폴리에틸렌 입자 표면의 기능성화 -
Oxygen Plasma Surface Modification of Polymer Powder in a Fluidized Bed Reactor - Functionalization of HDPE Powder Surface -
유동층 반응기에서 고분자 입자의 표면 성질을 개질하기 위해 반응기내에 산소 플라즈마를 형성하여 플라즈마내의 활성종에 의해 고밀도 폴리에틸렌(HDPE) 입자의 벌크성질의 변화는 없이 입자의 최외각 층에 산소기능기들을 형성시켰다. 플라즈마 처리된 입자 표면에 형성된 기능기들은 ESCA 측정과 FTIR 분석으로부터 카르보닐기(C=O)와 카르복실기[C(O)O-]임을 알 수 있다. 또한, 유동층 반응기에서 플라즈마 처리된 폴리데틸렌 입자의 기능기 형성에 미치는 조업 변수의 영향을 결정하였다. 산소 플라즈마 처리된 HDPE 입자 표면상에 산소기능기들의 세기는 처리시간의 증가에 따라 증가하다 일정해진다. HDPE 입자들의 산소기능기들의 형성과 IR 흡수비는 rf 파워 증가에 따라 증가한다. 그러나, 산소 유량의 증가에 따라서는 감소하게 된다. 플라즈마 처리된 HDPE 입자 표면상의 산소들은 복합 매개 변수, [(W/FM)t]가 약 6,000GJ·s/kg까지 증가한다.
To modify the surface properties of fine powders, polymer powders have been oxidized by the active species in an oxygen plasma. A plasma surface modification of polymer powders has been carried out in a fluidized bed reactor. The oxygen functionalities of carbonyl and carboxyl group[C=O, C(O)O-] are formed at the outermost layer of high density polyethylene(HDPE) powder by the oxygen plasma modification without change of bulk property. The effects of operation parameters on the functionalities of the plasma treated high density polyethylene powders have been determined in a fluidized bed reactor. The intensity of oxygen functionalities on the surface of plasma treated HDPE powder increases with increasing treatment time but it remains constant with further treatment time. The oxygen components of plasma treated powder increases linearly with radio frequency power but decreases with oxygen flow rate. Also, the oxygen component increases with increasing the composite parameter, [(W/FM)t], as the total plasma energy up to 6,000GJ·s/kg.
[References]
  1. Clark DT, Dilks A, J. Polym. Sci. A: Polym. Chem., 17, 957, 1979
  2. Gao S, Zeng Y, J. Appl. Polym. Sci., 47, 2065, 1993
  3. Hollahan JR, Bell AT, "Techniques and Applications of Plasma Chemistry," John Wiley & Sons, New York, 1974
  4. Boenig HV, "Fundamentals of Plasma Chemistry and Technology," Technomic Pub., Lancaster, 1988
  5. Yasuda H, "Plasma Polymerization," Academic Press, New York, 1985
  6. Inagaki N, Tasaka S, Ishii K, J. Appl. Polym. Sci., 48, 1433, 1993
  7. Akovali G, Aslan S, J. Appl. Polym. Sci., 50, 1747, 1993
  8. Poire E, Elemberg-Sapieha JE, Martinu L, Wertheimer MR, Liang S, Barton SS, Macdonald JA, J. Appl. Polym. Sci.: Appl. Polym. Symp., 54, 185, 1994
  9. Kim SD, Kang Y, Encyclopedia of Fluid Mechanics (Dispersed Phase Characteristics in Three Phase Fluidized Beds), Ed., By Cheremisinoff, N.P., Gulf Pub. Co., N.J. Ch. 37, 845, 1996
  10. Lee GS, Kim SD, Chem. Eng. J., 44, 1, 1990
  11. Lee GS, Kim SD, Baird MHI, Chem. Eng. J., 47, 47, 1991
  12. Morooka S, Okubo T, Kusakabe K, Powder Technol., 63, 105, 1990
  13. Clark DT, Feast WJ, "Polymer Surfaces," John Wiley & Sons, Chichester, 1978
  14. Wu S, "Polymer Interface and Adhesion," Marcel Dekker, New York, 1992
  15. Shi MK, Christoud J, Holl Y, Clouct F, J. Macromol. Sci.-Pure Appl. Chem., A30(2-3), 219, 1993
  16. Burfield DR, Loi PST, Proceedings of the International Symposium on Future Aspects of Olefin Polymerization, In: Keii T. and Soga K. (eds.), Kodansha Ltd., Tokyo, 1985
  17. Gazicki M, Wrobel AM, Kryszewski M, J. Appl. Polym. Sci.: Appl. Polym. Symp., 38, 1, 1984
  18. Radeva E, Tsankov D, Bobeev K, Spassov L, J. Appl. Polym. Sci., 50, 165, 1993
  19. Briggs D, Seah MP, "Practical Surface Analysis," John Wiley & Sons, New York, 1983
  20. Kondyurin AV, J. Appl. Polym. Sci., 48, 1417, 1993
  21. Inagaki N, Tasaka S, Abe H, J. Appl. Polym. Sci., 46, 595, 1992
  22. Golub MA, Cormia RD, Polymer, 30, 1576, 1989
  23. Yausda T, Gazicki M, Yasuda H, J. Appl. Polym. Sci.: Appl. Polym. Symp., 38, 201, 1984
  24. Iriyama Y, Yasuda H, J. Appl. Polym. Sci.: Appl. Polym. Symp., 42, 97, 1988