Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.35, No.2, 192-198, 1997
초임계 CO2-C2H5OH-H2O계의 상평형 연구
Phase Equilibrium Study of Supercritical CO2-C2H5OH-H2O System
초임계 유체상과 액상이 순환되는 상평형 실험장치를 사용하여 50℃, 101-178bar 사이의 초임계 CO2-C2H5OH-H2O계의 평형조성을 측정하고 이 결과를 Peng-Robinson의 상태방정식을 이용하여 해석하였다. PR-EOS를 본 3성분계에 적용함에 있어 adjustable parameter ε(ε, ε, ε)을 사용하는 새로운 혼합규칙을 제안하고 이때의 계산결과를 binary interaction parameter kij를 사용하는 전통적 방법과 비교하였다. Parameter ε을 사용하여 추정된 평형 조성은 실측치와 4% 이내의 오차로 부합되었으며 특히 초임계 유체상의 조성은 실측치와 1.5% 이내로 잘 일치하였다. 실험적 사실에 기초하여 온도 범위 40-60℃, 압력 범위 101-185bar 사이에 적용될 수 있는 ε과 온도 사이의 정량적인 관계식을 제시하였다.
Using a circulation-type apparatus, equilibrium compositions of a supercritical CO2-C2H5OH-H2O System under the conditions of 50℃ and 101-178 bar were measured experimentally and were compared with the values predicted by the Peng-Robinson equation-of-state. In applying PR-EOS, a new mixing rule including a new adjustable parameter ε(ε, ε, ε) was proposed and the equilibrium compositions predicted using the ε were compared with the results based on the conventional mixing rule. Equilibrium, compositions computed by using the parameter ε agreed with the experimental data within 4% AAD. It was found that the prediction by the newly developed procedure was quite satisfactory for the supercritical fluid phase, resulting in 1.5% AAD. From the experimental observations, an empirical correlation of ε with temperature was proposed which may be applicable for the operating conditions between 40-60℃ and 101-185 bar.
[References]
  1. 김진한, 허병기, 목영일, 생물공학회지, 9, 443, 1994
  2. 이윤용, 김재덕, 89-C401-101AP, 동력자원부
  3. Saito S, Jpn. Kokai Tokkyo Kaho, 528, 86, 1986
  4. Gilbert ML, Paulaitis ME, J. Chem. Eng. Data, 31, 296, 1986
  5. dela Ossa EM, Brandani V, Re GD, Giacomo GD, Ferri E, Fluid Phase Equilib., 56, 325, 1990
  6. Inomata H, Kondo A, Arai K, Saito S, J. Chem. Eng. Jpn., 23, 199, 1990
  7. Takishima S, Saiki K, Arai K, Saito S, J. Chem. Eng. Jpn., 19, 48, 1986
  8. Soave G, Chem. Eng. Sci., 27, 1197, 1972
  9. Soave G, Chem. Eng. Sci., 35, 1725, 1980
  10. 임종성, 고려대학교 박사학위 논문, 1992
  11. Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., 6, 58, 1976
  12. Patel NC, Teja AS, Chem. Eng. Sci., 37, 463, 1982
  13. Adachi Y, Sugie H, Fluid Phase Equilib., 28, 103, 1986
  14. Yu JM, Lu BC, Iwai Y, Fluid Phase Equilib., 37, 207, 1987
  15. Wilson GM, J. Am. Chem. Soc., 86, 127, 1964
  16. Huron MJ, Vidal J, Fluid Phase Equilib., 3, 255, 1979
  17. Ohta T, Fluid Phase Equilib., 47, 1, 1989
  18. Fredenslund A, Jones RL, Prausnitz JM, AIChE J., 21, 1086, 1975
  19. Schwartzentruber J, Poncc-Ramirez L, Renon H, Ind. Eng. Chem., 25, 804, 1986
  20. Luedecke D, Prausnitz JM, Fluid Phase Equilib., 22, 1, 1985
  21. Cho JS, Lim JS, Kim JD, Lee YY, Chun HS, HWAHAK KONGHAK, 29(4), 487, 1991
  22. Yoon KH, Lee HH, Lee H, J. Chem. Eng. Data, 38, 53, 1993
  23. Furuta S, Ikawa N, Fukuzato R, Imanishi N, Kagaku Kogaku, 15(3), 519, 1989
  24. McHugh MA, Mallet MW, Kohn JP, Ann Arbor Science, Ann Arbor, MI, 221, 1983
  25. Mohamed RS, Enick RM, Bendale PG, Holder GD, Chem. Eng. Commun., 59, 259, 1987
  26. Mohamed RS, Holder GD, Fluid Phase Equilib., 32, 295, 1987
  27. Nakayama K, Suzuki J, Suzuki T, Supercritical Fluids Symposium, France, October, 1988
  28. Peng YS, Du XY, Li CF, Hou YJ, Supercritical Fluids Symposium, France, October, 1988
  29. Horizoe H, Tanimoto T, Yamamoto I, Kano Y, Fluid Phase Equilib., 84, 297, 1993