Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.35, No.2, 162-167, 1997
핏치계 활성탄소섬유 고정탑에서의 크롬(Ⅵ)의 제거
The Removal of Chromium(Ⅵ) in Pitch-based ACF Fixed Bed
활성탄소섬유와 활성탄소 고정탑을 통한 수용액으로부터의 크롬(Ⅵ)의 흡착량은 활성탄소섬유와 활성탄의 비표면적에 비례하였으며 활성탄소섬유가 활성탄소에 비해 1.5배만큼 흡착속도가 빨랐다. 크롬(Ⅵ)이 흡착되는 동안 유출액의 pH는 수산화이온(OH)의 발생에 의해 증가하였다. 10-3M이하의 농도에서는 흡착이 잘 되었으나 크롬(Ⅵ)의 농도가 증가할수록 흡착제와 친화력이 약한 Cr2O72-이 HCrO4-보다 증가하여 유출액의 상대농도값이 초기에 증가하는 현상이 나타났다. 유속이 빠를수록 입자 주위의 경막저항이 감소하여 흡착속도가 증가하였으나 흡착량은 일정하였다. 농도 prolfile이 정형분포를 형성하기 위한 최소 길이는 미사용층의 길이와 거의 일치하였다.
The amount of Cr(Ⅵ) adsorbed from aqueous solution in AC and ACF packed column was in proportion to specific surface area of AC and ACF, and the adsorption rate of ACF was 1.5 times faster than that of AC. Owing to release of OH-, the pH of solution was increased during adsorption of Cr(Ⅵ). The adsorption of Cr(Ⅵ) was well performed under 10-3M concentration. However, as the concentration increase, the effluent concentration was suddenly increased in the beginning of flow, which was due to the increase of molar ratio of Cr2O72- to HCrO4. Although the adsorption rate was increased in higher flow rate because of decreasing in film resistance, the amount adsorbed was constant. The minimum bed length for constant pattern was coincided with the length of unused bed.
[References]
  1. Bradhury D, "Water Reactor Decontamination Using," the LOMI Process, ATOM, 373, 5, 1987
  2. Bradhury D, "Water Chemistry of Nuclear Reactor Systems," BNES. Bournmouth, UK, 1983
  3. Jung HH, Master Dissertatio Chungnam National Univ., Taejon, Korea, 1994
  4. Jung CH, Ph.D. Dissertation, Chungnam National Univ., Taejon, Korea, 1994
  5. Billinge BHM, Evans MG, J. Chim. Phys. Chem. Biol., 81, 779, 1984
  6. Suzuki M, Carbon, 32, 577, 1994
  7. Roon TK, Lee KW, "Application of UV-Vis Absorption Spectrophotometry," KSRI-ET-46, 1982
  8. Ehrburger P, Ryu SK, Rhee BS, Lee JK, Lee DW, Pusset N, Proceeding of International Carbon Conference, Paris, 96, 1990
  9. Catalin: "Lange Handbook of Chemistry," 13th ed., McGraw-Hill, New York, 1985
  10. Furusawa T, Smith JM, AIChE J., 19, 401, 1973
  11. Ruckenstein E, Vaidyanathan AS, Youngquist GR, Chem. Eng. Sci., 26, 1305, 1971
  12. Shah DB, Ruthven DM, AIChE J., 23, 804, 1977
  13. Coulson JM, Richardson JF, "Chem. Eng.," 2nd ed., Pergamon Press, Oxford, New York, 1979
  14. Mahajam OP, Youssef A, Walker PL, Sep. Sci. Technol., 13, 487, 1987
  15. Boehm HP, Carbon, 32, 759, 1994
  16. Frumkin A, "On the Adsorption of Electrolytes on Activated Coal," Kolloid, Z. (Ger.), 51, 123, 1930
  17. Smithson GR, "Report to U.S. Environ., Washington D.C., 1971
  18. Cotton FA, Wilkinson G, "Advanced Inorganic Chemistry," 5th ed., Wiley, New York, 1988
  19. Huang CP, Wu MH, Water Res., 11, 673, 1977
  20. Noll KE, Gounaris V, Hou WS, "Adsorption Technology for Air and Water Pollution Control," Lewis Inc., U.S.A., 1992
  21. Steenberg B, "Adsorption and Exchange of Ions on Activated Charcoal," Almquist & Wiksell, Uppsala, 1944
  22. Huang CP, Wu MH, J. Water Pollut. Control Fed., 47, 2437, 1975
  23. Colwell CJ, Dranoff IS, Ind. Eng. Chem. Fundam., 10, 65, 1971
  24. Ranz WE, Marshall WR, Chem. Eng. Prog., 48, 173, 1952
  25. Carberry JJ, AIChE J., 6, 460, 1960
  26. Wilson EJ, Geankoplis CJ, Ind. Eng. Chem. Fundam., 5, 9, 1966
  27. Wakao N, Funazkri T, Chem. Eng. Sci., 33, 1375, 1978
  28. Wilke CR, Chang P, AIChE J., 1, 264, 1955
  29. Ruthven DM, "Principles of Adsorption and Adsorption Process," John Wiley & Sons, U.S.A., 1984