Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.35, No.1, 102-109, 1997
기포탑 반응기를 이용한 석탄 타르 핏치의 중합 반응
Polymerization Reaction of Coal Tar Pitch Using a Bubble Column Reactor
기포탑 반응기를 사용하여 공기 취입에 의해 범용 탄소섬유 제조용 석탄 타르 핏치의 중합 반응시 반응 특성과 중합 반응 속도를 고찰하였다. 공기 취입에 의한 핏치의 중합 반응에 있어서 기포탑 반응기를 사용함으로써 물질 전달 면적을 증가시키고, 반응상 전체를 보다 균일하게 혼합할 수 있어 반응속도가 크게 증가되었다. 공기 취입법으로 개질한 핏치는 원료 핏치에 비하여 톨루엔 및 퀴놀린 불용 성분의 함량과 C/H 원자비 그리고 연화점이 높아졌다. 실험결과로부터 연속 반응 모델에 의한 속도론적 변수, 즉, 온도에 따른 k값, 활성화 에너지, 빈도인자 등을 구할 수 있었으며 이 변수들은 공기 취입에 의한 석탄 타르 핏치의 반응을 제어할 수 있는 중요한 자료로, 최적 개질 조건을 선정할 수 있었다. 반응 가스 산소는 중합 반응 기구에 있어 촉매적 역할을 수행하여 활성화 에너지를 감소시켰으나, 일부 산소는 하이드록실 그룹, 케톤, 에스테르 등의 치환된 형태로 잔존하였다.
Characteristics and rates of polymerization of coal tar pitch(CTP) for general purpose carbon fiber by an air-blowing process in the bubble column reactor were investigated. The bubble column reactor contributed to increasing the polymerization reaction rate of CTP in an air-blowing process. This increase in the polymerization rate is due to the enhanced mass transfer area between molten pitch and reacting gas, and the homogeneous mixing of reactants. Toluene insoluble(TI) and Quinoline insoluble(QI), C/H ratio, and softening point of reforming pitch were increased compared to the case when raw CTP was used. Kinetic parameters, such as k value with temperature, activation energy, and frequency factor could be obtained by the continuous reaction model from the results. The optimum reforming condition from these kinetic parameters could be selected to control the reaction of CTP by the air-blowing process. The activation energy for the polymerization of pitch decreased dramatically because a little bit of oxygen which acted as a catalyst in the reaction was remained in the pitch as a hydroxyl group, ketone, ester and so on.
[References]
  1. Eser S, Jenkins RG, Derbyshire FJ, Carbon, 24, 77, 1986
  2. Park YD, J. Mater. Sci., 21, 424, 1986
  3. Mochida I, Korai Y, Nakamura M, Zeng SM, Kameyama M, Carbon, 27, 498, 1989
  4. Maeda T, Zeng SM, Tokumitsu K, Mondori J, Mochida I, Carbon, 31, 407, 1993
  5. Fitzer E, Liu G, 19th Biennial Conf. on Carbon, 254, 1989
  6. Mochida I, Toshima H, Korai Y, J. Mater. Sci., 25, 76, 1990
  7. Mochida I, Korai Y, Nakamura M, In S, Rhee B, 19th Biennial Conf. on Carbon, 136, 1989
  8. Mochida I, Toshima H, Korai Y, Matsumoto T, J. Mater. Sci., 23, 670, 1989
  9. Maeda T, Zeng SM, Tokumitsu K, Mondori J, Mochida I, Carbon, 31, 407, 1993
  10. Zeng SM, Maeda T, Tokumitsu K, Mondor J, Mochida I, Carbon, 31, 413, 1993
  11. Choi JH, Kumagai H, Chiba T, Sanada Y, Carbon, 33, 109, 1995
  12. Yamaguchi C, Mondori J, Matsumoto A, Honda H, Kumagai H, Sanada Y, Carbon, 33, 193, 1995
  13. Lewis IC, Singer IS, 12th Biennial Conf. on Carbon, 265, 1975
  14. Eser S, Jenkins RG, 16th Biennial Conf. on Carbon, 169, 1983
  15. Yamada Y, 12th Biennial Conf. on Carbon, 98, 1983
  16. Fukui Y, Hosoi T, Mukaida H, Makida H, Nishimura J, Ohta A, J. Jpn. Petrol. Inst., 22, 375, 1979
  17. ASTM D 2117, 26, 1982
  18. Ueyama K, Miyauch T, AIChE J., 25, 258, 1979
  19. Miyauchi T, Shu CN, J. Chem. Eng. Jpn., 35, 958, 1970
  20. Van Krevelen DW, Fuel, 44, 229, 1965
  21. Traxler RN, Schweyer HE, Oil Gas J., 52, 158, 1953
  22. ASTM D 2318, 227, 1981
  23. Sanada Y, J. Jpn. Petrol. Inst., 15, 182, 1972
  24. Mochida I, Carbon, 13, 489, 1975
  25. Choi JH, Kumagai H, Chiba T, Sanada Y, 21th Binnial Conf. on Carbon, 286, 1993