Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.35, No.1, 69-76, 1997
CFC-12/HFC-32 혼합기체의 활성탄소섬유에 대한 흡착평형
Adsorption Equilibrium of CFC-12/HFC-32 Mixture on Activated Carbon Fiber
셀룰로우즈계 활성탄소섬유를 이용하여 CFC-12, HFC-32 순수기체 및 CFC-12/HFC-32 혼합기체에 대한 282-323 K의 온도 범위와 0-1 atm의 압력 범위에서의 흡착평형실험을 행하였다. CFC-12와 HFC-32의 순수 및 혼합물의 흡착평형은 본 연구에서 사용된 활성탄소섬유에 대해 CFC-12가 HFC-32보다 높은 선택성을 나타내었다. CFC-12와 HFC-32 순수기체의 흡착평형의 경우 Langmuir-Freundlich 모델이 Langmuir 모델에 비해 정확한 예측치를 보였다. 혼합물 예측의 경우 IAS와 IH-SPD-NAS 모델이 있어 Extended Langmuir-Freundlich 모델보다 훨씬 잘 예측하였다. IH-SPD-NAS 모델을 사용한 혼합물의 흡착평형 분석에 있어 CFC-12는 Raoult의 법칙으로부터 약간 양의 이탈을 보였으며, HFC-32의 경우 희석농도의 영역에서 (YCFC → 1.0) 상대적으로 큰 양의 이탈을 보였다. 그러나 흡착상에서 비이상성의 영향은 본 계의 경우 그 영향이 중요하지 않았다.
Adsorption isotherms for CFC-12 and HFC-32 at 0-1atm, and binary adsorption equilibria of these mixture at 100mmHg were measured on an activated carbon fiber(ACF) at 283-323 K. In this experimental rage, ACF showed better selectivity for CFC-12 in the pure and binary experiments. For pure gas adsorption isotherms, the Langmuir-Freundlich model showed better predictions than the Langmuir model did. In the case of the binary adsorption equilibria, the IAS and IH-SPD-NAS models predicted the isotherms much better than the Extended Langmuir-Freundlich did. The analysis of the IH-SPD-NAS model indicated that the small positive deviations from Raoult’s law were generally exhibited in CFC-12, while the moderate positive deviations from Raoult’s law occurred in the dilute region of HFC-32(YCFC→1.0). However, the nonideality in the adsorbed phase can be negligible under these experimental conditions.
[References]
  1. Abrams DS, Prausnitz JM, AIChE J., 21, 116, 1975
  2. Breck DW, "Zeolite Molecular Sieves," John Wiley & Sons, New York, 1974
  3. Chen YD, Ritter JA, Yang RT, AIChE J., 45, 2877, 1990
  4. Cochran TW, Kabcl RL, Danner RP, AIChE J., 31, 268, 1985
  5. Costa E, Sotelo JL, Calleja G, Marron C, AIChE J., 27, 5, 1981
  6. Golden TC, Sircar S, AIChE J., 40(6), 935, 1994
  7. Hoory SE, Prausnitz JM, Chem. Eng. Sci., 22, 1025, 1967
  8. Hori H, Tanaka I, Akiyama T, J. Chem. Soc., 9, 1241, 1986
  9. IMSL MATH/LIBRARY, FORTRAN subroutine for mathematical applications ver. 1.1 User's Manual, IMSL Inc., 1989
  10. Kodama KS, Kaguei S, Wakao N, Can. J. Chem. Eng., 70, 244, 1992
  11. Kumar R, Can. J. Chem. Eng., 60, 577, 1982
  12. Loughlin KF, Hasanain MA, Abdul-Rehman HB, Ind. Eng. Chem. Res., 29, 1535, 1990
  13. Mahle JJ, Buettner LC, Friday DK, Ind. Eng. Chem. Res., 33(2), 346, 1994
  14. Miller GW, Knaebel KS, Ikels KG, AIChE J., 33, 194, 1987
  15. Molina MJ, Rowland FS, Nature, 249, 810, 1974
  16. Myers AL, "Adsorption of Pure Gases and Their Mixture on Heterogeneous Surfaces," Fundamentals of Adsorption (Myers, A.L. and Belfort, G. Ed.), Eng. Foundation, New York, 365, 1984
  17. Myers AL, AIChE J., 29, 691, 1983
  18. Myers AL, "Theories of Adsorption in Micropores," Proc. Nato ASI: Adsorption Science and Technology, Portugal, 1988
  19. Myers AL, Prausnitz JM, AIChE J., 11, 121, 1965
  20. Ross S, Olivier JP, "On Physical Adsorption," Interscience, New York, 1964
  21. Ruthven DM, "Principles of Adsorption & Adsorption Processes," John Wiley & Sons, New York, 1984
  22. Sloan ED, Mullins JC, Ind. Eng. Chem. Fundam., 14, 347, 1975
  23. Suwanayuen S, Danner RP, AIChE J., 31, 2075, 1980
  24. Talu O, Myers AL, AIChE J., 34, 1887, 1988
  25. Talu O, Zwiebel I, AIChE J., 32, 1263, 1986
  26. Talu O, Li J, Myers AL, Adsorption, 1, 103, 1995
  27. Valenzuela DP, Myers AL, AIChE J., 34(3), 397, 1988
  28. Wilson GM, J. Am. Chem. Soc., 86, 127, 1964
  29. Yang RT, "Gas Separation by Adsorption Processes," Butterworths, Boston, 1987
  30. Park JH, Jun JH, Hwang KS, Lee WK, HWAHAK KONGHAK, 33(3), 301, 1995
  31. Ahn BS, Lee SC, Park KY, Chem. Ind. Technol., 12(3), 255, 1994
  32. 이한주, "기체분리를 위한 흡착공정," 지구문화사, 1993
  33. Lim JG, Chang WC, Lee TJ, Shim JJ, Choi DK, Lee YY, HWAHAK KONGHAK, 32(3), 341, 1994