Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.35, No.1, 55-62, 1997
Poly(acrylonitrile)-Li계 폴리머 전해질의 전기화학적 성질
Electrochemical Properties of Poly(acrylonitrile)-Li Based Polymer Electrolyte
Polyacrylonitrile(PAN) 매트릭스에 LiClO4, LiAsF6, LiBF4, LiPF6 등의 리튬염과 ethylene carbonate(EC), propylene carbonate(PC) 유기용매 등이 캡슐화된 폴리머 전해질의 전기화학적인 특성을 조사하였다. 모든 조성의 폴리머 전해질의 이온 전도도는 상온에서 10-3-10-4S/cm 범위를 나타냈다. 리튬 전극과 폴리머 전해질간의 시간에 따른 계면 저항은 EC/PC의 유기용매비가 75:25일 때 가장 안정한 것으로 나타났다. 이 용매비에서 LiPF6 리튬염을 갖는 폴리머 전해질의 이온 전도도 및 계면 저항은 시간에 따라 안정한 값을 보였다. 이 전해질은 4.3V(vs. Li+/Li)까지 전기화학적으로 안정하였고 따라서 리튬 폴리머 전지에 적용 가능한 것으로 나타났다. 폴리며 전해질들에서 리튬 이온의 확산계수는 4×10-7cm2/sec이며 교환 전류밀도는 시간에 따라서 감소하는 것으로 나타났다.
The electrochemical properties of polymer electrolyte encapsulated LiClO4, LiAsF6, LiBF4, LiPF6 lithium salts and ethylene carbonate(EC), propylene carbonate(PC) organic solvent in polyacrylonitrile(PAN) matrix were investigated. The ionic conductivity of polymer electrolyte of all the composition showed in the rage 10-3-10-4S/cm at room temperature. The interfacial resistance between lithium electrode and polymer electrolyte with time was the most stable when EC/PC organic solvent ratio is 75 : 25. The ionic conductivity and interfacial resistance of polymer electrolyte containing lithium salt LiPF6 in this solvent ratio showed stable value with storage time. This electrolyte was electrochemically stable up to 4.3V(vs. Li+/Li), so that it could be apply to lithium polymer battery. The diffusion coefficient of lithium ion in polymer electrolytes was 4×10-7cm2/sec and the exchange current density decreased with time.
[References]
  1. Abraham KM, Alamgir M, Chem. Mater., 3, 339, 1991
  2. Croce F, Gerace F, Dautzemberg G, Passerini S, Appetecchi GB, Scrosati B, Electrochim. Acta, 39(14), 2187, 1994
  3. Armand M, Solid State Ion., 9-10, 745, 1983
  4. Kumar B, Weissman PT, Marsh RA, J. Electrochem. Soc., 140, 320, 1993
  5. Kim HS, Cho BW, Kim JT, Yun KS, Chun HS, J. Power Sources, accepted, 1996
  6. Armand MB, Chabagano JM, Duclot M, Second International Meeting on Solid Electrolyte, Scotland, 1978
  7. Feuillade G, Perche P, J. Appl. Electrochem., 15, 63, 1975
  8. Watanabe M, Kanbe M, Nagaoka K, Shinoraha I, J. Polym. Sci. B: Polym. Phys., 21, 939, 1983
  9. Abraham KM, Alamgir M, J. Electrochem. Soc., 137, 1657, 1990
  10. Nagasubramanian G, Attia AI, Halpert G, J. Appl. Electrochem., 24(4), 298, 1994
  11. Hong H, Liquan C, Xuejie H, Rongjian X, Electrochim. Acta, 37, 1671, 1992
  12. Geronov Y, Schwager F, Muller RH, Proceedings of the Workshop on Lithium Non-aqueous Battery Electrochemistry, Princeton, New Jersey, 80-87, 1980
  13. Peled E, Straze H, J. Electrochem. Soc., 124, 1030, 1977
  14. Tobishima S, Okada T, Electrochim. Acta, 30, 1715, 1985
  15. Froment M, Garrean M, Thevenin J, Warin D, J. Microscopie Spectr. Electron., 3, 111, 1979
  16. Kanamura K, Tamura H, Shiraishi S, Takehara Z, Denki Kagaku, 61, 1377, 1993
  17. Aurbach D, Weissman I, Zaban A, Chusid O, Electrochim. Acta, 39(1), 51, 1994
  18. Meitav A, Peled E, J. Electroanal. Chem., 134, 49, 1982
  19. Ciemiecki KT, Auborn JJ, Electrochemical Society Proceedings, pv84-1, 363, 1984
  20. Tarascon JM, Guyomard D, Solid State Ion., 69(3-4), 293, 1994
  21. Gileadi E, "Electrode Kinetics," VCH Publishers Inc, New York, NY, 1993
  22. Fauteux D, Electrochim. Acta, 38, 1199, 1993
  23. Morita M, Fukumasa T, Motoda M, Tsutsumi H, Matsuda Y, J. Electrochem. Soc., 137, 3401, 1990