Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.35, No.1, 41-45, 1997
Ca-alginate 겔 내부로의 용질의 확산특성
The Diffusion Characteristics of Solute into the Ca-alginate Gel Bead
회분식 혼합반응기에서 Ca-alginate 겔의 내부로 용질이 확산될 때 이에 영향을 미칠 수 있는 여러 가지 요인에 대하여 실험적으로 고찰하였다. 고려된 변수로는 용질의 종류(maltose, xylose, maltose, lactose), 온도(30-50℃), Ca-alginate 겔의 구조에 영향을 줄 수 있는 요인인 Na-alginate 농도(1.5-4wt%)와 CaCl2 농도(0.05M, 0.5M)이다. 시간에 따른 용액 내에 용질 농도의 변화를 측정하여 이로부터 적절한 유효확산 계수를 결정할 수 있었다. Glucose와 xylose는 Na-alginate의 농도에 따른 유효확산 계수의 변화는 없었으나 maltose와 lactose는 2-3% 구간에서 급격히 변화하였다. 본 연구에서 고찰된 CaCl2의 농도 범위에서는 이의 농도에 따른 영향이 없었다. 분자량이 작은 단당류(glucose, xylose)의 경우 온도에 따른 영향은 없었으나 이당류(maltose, lactose)의 경우 온도에 따른 영향이 존재하였으며, Na-alginate 2wt%의 경우 40℃에서 50℃로 온도가 증가됨에 따라서 유효확산계수가 85%의 증가를 보였다.
The diffusion characteristics of several solutes into the Ca-alginate gel beads have been investigated experimentally in a well mixed batch reactor. The experimental variables were concentration of CaCl2(0.05M, 0.5M), temperature(30-50℃), concentration of Na-alginate (1.5-4wt%), and the kind of solutes with different molecular weight such as glucose, xylose,, maltose, and lactose, respectively. The effective diffusion coefficient was determined by measuring solute concentration in the solution with time. It was found from this experiment that the values of the effective diffusion coefficient of glucose and xylose were not affected by the concentrations of Na-alginate and CaCl2, but those of maltose and lactose were very much affected by the concentration of Na-alginate, especially in the rage of 2-3%. The effect of temperature on the diffusion of glucose and xylose with relatively small molecular weight could be neglected.
[References]
  1. Elving PJ, Winefordner JD, "Solid Phase Biochemistry," A Wiley-Interscience Publication, 258, 1983
  2. Kierstan M, Biotechnol. Bioeng., 23, 707, 1981
  3. Gray CJ, Dwsett J, Biotechnol. Bioeng., 31, 607, 1988
  4. Tanaka H, Matsumura M, Veliky IA, Biotechnol. Bioeng., 26, 53, 1984
  5. Shintaro F, Minoru S, Biotechnol. Bioeng., 18, 389, 1985
  6. Churchill RV, "Modern Operational Mathematics in Enigneering," McGraw-Hill, New York, 240, 1984
  7. Wilke CR, Chang P, Am. Inst. Chem. Eng. J., 1, 264, 1955
  8. Shere P, Kluge M, Sahn H, Biotechnol. Bioeng., 23, 1507, 1981
  9. Martinsen A, Brak GS, Smidsrod O, Biotechnol. Bioeng., 33, 79, 1989
  10. Husein Q, Igbal J, Biotechnol. Bioeng., 27, 1102, 1985
  11. Cheethan P, Blunt KW, Bucke C, Biotechnol. Bioeng., 21, 2155, 1979
  12. Kierstan M, Darch C, Reilly J, Biotechnol. Bioeng., 24, 1507, 1984
  13. Peter SJC, Kevin WB, Christopher B, Biotechnol. Bioeng., 21, 2155, 1979
  14. Horowitz SB, Fenichel IR, J. Phys. Chem., 68, 3378, 1964
  15. Yang RYK, Pu HT, Biotechnol. Bioeng., 32, 891, 1988
  16. Nguyen A, Luong J, Biotechnol. Bioeng., 21, 2155, 1986