Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.41, No.1, 114-121, 2003
수소/질소/이산화탄소 혼합기체로부터 전기화학적 수소 분리
Electrochemical H2 Separation from H2/N2/CO2 Mixed Gas
양이온 교환막을 이용한 전기화학적 막분리법으로 수소/질소/이산화탄소 혼합기체로부터 수소를 분리하고, 운전조건 변화에 따른 수소의 분리특성, 생성 수소의 순도 및 전력효율을 고찰하였고, 2단 공정을 통하여 수소 순도의 향상 및 질소, 이산화탄소의 투과 특성에 관하여 연구하였다. 운전 온도의 상승에 따라 셀 성능, 수소의 순도, 생성량 및 효율이 증가하였으며, 도입 혼합기체의 압력증가는 생성량 및 효율의 증가를 가져오나, 생성물의 순도를 저하시켰다. 각각 운전조건에 대하여 전류 밀도 300 mA/cm(2)에서 최대 전력효율을 나타내었다. 2단 공정을 통하여 100 mA/cm(2)의 낮은 전류 밀도에서도 33%의 도입기체에서 97.39%의 고순도 수소를 얻을 수 있었다. 이산화탄소의 투과가 질소의 투과보다 더 우세하여 수소의 순도에 더 큰 영향을 미쳤다.
Hydrogen was separated from hydrogen/nitrogen/carbon dioxide mixture gas by electrochemical method using proton exchange membrane. Separation characteristics, product hydrogen purity and power efficiencies were obtained under different operating cell temperatures and feed pressures. The purity of hydrogen was enhanced using two-staged separation process, and the permeation of nitrogen and carbon dioxide was studied. Cell characteristic, hydrogen purity, flux and efficiencies was increased as cell temperature was raised. The increase of feed pressure caused rising of flux and efficiencies, but dropped hydrogen purity. In all cases, power efficiency had the maximum value at 300 mA/cm(2). high purity, 97.39%, can be achieved from low purity feed, 33%, through two-staged separation process at 100 mA/cm(2). The permeability of carbon dioxide was larger than that of nitrogen, so the purity of hydrogen was more affected by carbon dioxide than by nitrogen.
[References]
  1. Kim TY, The Korea Society for Energy Engineering, 8, 144-156, 1999
  2. Winnick J, Chem. Eng. Prog., 86(1), 41, 1990
  3. Gerischer H, Tobias CW, "Advances in Electrochemical Scienceand Engineering," VCH, 1990
  4. Rousseau RW, "Handbook of Separation Process Technology," Wiley, New York, 1987
  5. Sedlak JM, Austin JF, LaConti AB, Int. J. Hydrog. Energy, 6, 45, 1981
  6. Lemons RA, J. Power Sources, 29, 251, 1990
  7. Eisman GA, J. Power Sources, 29, 389, 1990
  8. Lee SJ, Ph.D. Thesis, Yonsei University, Seoul, Korea, 1995
  9. Bard AJ, Faulkner LR, "Electrochemical Methods," Wiley, NY, 1980
  10. Larminie J, "Fuel Cell Systems Explained," Wiley, NY, 2000
  11. Scott K, "Electrochemical Reaction Engineering," Academic Press, London, 1991
  12. Lee SJ, Mukerjee S, McBreen J, Rho YW, Kho YT, Lee TH, Electrochim. Acta, 43(24), 3693, 1998
  13. Mulder M, "Basic Principles of Membrane Technology," Kluwer Academic Publishers, London, 1991
  14. Zaikov GE, "Diffusion of Electrolytes on Polymers," VSP, Netherlands, 1998
  15. Sakai T, Torikai E, J. Electrochem. Soc., 133, 1, 1986