Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.41, No.1, 99-105, 2003
고정층과 순환유동층에서 CaSO4의 환원반응에 대한 온도와 CO농도의 영향
Effects of Temperature and CO Concentration on Reduction of Calcium Sulfate in Fixed Bed and Circulating Fluidized Bed
순환유동층 석탄연소로에서 석회석에 의한 탈황반응에 영향을 미치는 CaSO4의 환원반응에 의한 SO2 재배출을 실험적으로 확인하고 SO2의 재배출에 미치는 온도와 CO 농도의 영향에 대해 상용 순환유동층에 적용할 수 있는 기초자료를 확보하기 위해 고정층과 순환유동층에서 층물질로 석회석과 상용 순환유동층 하부회를 이용하여 환원실험을 수행하였으며 CaSO4의 환원반응에 미치는 온도와 CO의 영향을 측정 및 해석하였다. 고온조건에서 CO가 환원제로 작용하여 CaSO4로부터 SO2가 재배출되는 현상을 확인하였으며 CaSO4로부터 SO2의 재배출은 온도와 CO 농도가 증가함에 따라 증가하였다. 본 실험의 결과에 의해 온도가 증가함에 따라 석회석에 의한 탈황율이 감소하는 현상을 환원이론으로 설명할 수 있다는 것이 확인되었다.
For qualitative understanding of the sulphur capture process in a circulating fluidized bed furnace, the effects of temperature and CO concentration on the reactivity of partially sulfated CaO were experimentally examined. The tests were performed in a fixed bed reactor and lab-scale circulating fluidized bed reactor. The materials used were partially sulfated domestic limestone and bottom ash drained from commercial circulating fluidized bed furnaces. The re-emission of SO2 from partially sulfated limestone and bottom ash increases with temperature as well as with the concentration of the reducing agent CO. From the results of this study, the temperature dependence of sulfation could be explained by reduction theory.
[References]
  1. Shun D, Park WS, Son JE, Chem. Ind. Technol., 13(1), 6, 1995
  2. Son JE, "Development of Clean Coal Technology," Research Report, KIER-941129, Korea Institute of Energy Research, Daejeon, 1994
  3. Maitland JE, Skowyra RS, Wilhelm BW, "Design Considerations for Utility Size CFB Steam Generators," Proc. 10th Korea-Usa Joint Workshop on Coal Utilization Technology, IV-71, 1994
  4. Shun D, Jin GT, Yi CK, Park J, Ryu HJ, Han KH, Bae DH, Jo SH, Lee SY, "Development of Circulating Fluidized Bed Combustion and Emission Control Technology," REsearch Report, KIER-A03707, Korea Institute of Energy Research, Daejeon, 2000
  5. Basu P, Fraser SA, Circulating Fluidized Bed Boilers, Butterworth-Heinemann, Boston, Stoneham, 1999
  6. Hirama H, Proc. of the 2nd Int. Works. on Ener. Tech. Res. Network in the Asian-Pacific Region, Feb., Tsukuba, 1995
  7. Schaub G, Reimert R, Albrecht J, "Investigation of Emission Rates from large Scale CFB, Combustion Plants," Proc. of 10th Int. Conf. on Fluidized Bed Combustion, April-May, San Francisco, 685-691, 1989
  8. Stouffer JM, Yoon H, AIChE J., 35, 1253, 1989
  9. Talukdar J, Basu P, Greenblatt JH, Fuel, 75, 1115, 1996
  10. Lyngfelt A, Leckner BJ, J. Inst. Energy, 62, 62, 1989
  11. Hartman M, Tunka O, Chem. Eng. Sci., 35(5), 1189, 1980
  12. Jonke AA, Vogel GJ, Carls EL, Ramaswami D, Anastasia L, Jarry A, Hass M, AIChE Symp. Ser., 68, 241, 1972
  13. Lyngfelt A, Leckner B, Chem. Eng. Sci., 48(6), 1131, 1993
  14. Dennis JS, Hayhurst AN, In Twentieth Int. Symp. on Combustion, The Combustion Institute, Pittsburgh, 1347-1355, 1984
  15. Yong C, Basu P, Cen K, Fuel, 73(1), 117, 1994
  16. Moss G, In Fluidized Bed Combustion, Symp. Ser. No. 1, Institute of Fuel, London, D2-1-D2-9, 1975
  17. Shun D, Bae DH, Han KH, Son JE, Kang Y, Wee YH, Lee JS, Ji PS, HWAHAK KONGHAK, 34(3), 321, 1996