Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.41, No.1, 80-85, 2003
C3F6 플라즈마 중합에 의한 금속표면의 소수성 향상
The Enhancement of Hydrophobicity on Metal Surface with C3F6 Plasma Polymerization
단량체인 hexafluoropropene(C3F6) 기체를 플라즈마 중합하여 구리표면에 증착된 불소화합물이 표면 소수성 성향의 관점에서 조사되었다. 표면 소수성이 최대가 되는 조건을 찾기 위해 플라즈마 변수를 변화시켰으며 플라즈마 출력과 압력 증가에 따라 증착속도는 최대 60[μg cm(-2)min(-1)를 나타냈다. 100 W, 1 torr, 10 min의 공정변수에서 표면 자유에너지가 8.8[dyne cm(-1)]로 물과의 접촉각이 127.75 °인 소수성 표면을 확인하였다. 플라즈마 증착된 표면은 CF, CF2 등의 불화탄소 기능기가 표면에 도포 되었으며 C/F 비가 2이하를 나타내었다. 구리표면에 형성된 불소화합물은 1 μm 이하의 두께로 얇고 균일한 형태를 지니고 있으며 표면 조도의 증가가 접촉각을 더욱 상승시켜 구리표면이 합성고분자인 PTFE(108 °) 보다 소수성이 향상되었다.
Fluorocarbon, which was deposited on copper surface by plasma polymerization with monomer C3F6, was investigated from the point of the hydrophobicity. Plasma parameters were changed to find the maximum conditions of the surface hydrophobicity. Rate of deposition with increasing plasma power and pressure showed the value of 60[μg cm(-2)min(-1)]. It was found that the surface energy was 8.8[dyne cm(-1)] and contact angel with water was 127.75 ° at the optimum conditions, 100 W, 1 torr, 10 min. The surface with plasma deposition was coated fluorocarbon groups such as CF, CF2 and C/F atomic ratio showed the value of less than 2. Deposited fluorocarbon indicated thin and homogeneous film with the thickness of 1 μm. Contact angle of plasma deposited Cu surface showed more hydrophobic than that of synthesis polymer PTFE(108 °).
[References]
  1. Wang HZ, Rembold MW, Wang JQ, J. Appl. Polym. Sci., 49, 701, 1993
  2. Holden KM, Wanniarachchi AS, Marto PJ, J. Heat Transfer, 109, 768, 1987
  3. Merfeld GD, Petrich MA, J. Vac. Sci. Technol. A, 12(2), 365, 1994
  4. Hozumi A, Takai O, Thin Solid Films, 303(1-2), 222, 1997
  5. Biederman H, Osada Y, "Plasma Polymerization Process," 1st ed., Elsevier, New York, NY, 1992
  6. Kusano, "Surface Treatment Method," U.S. Patent, No. 5,041,304, 1991
  7. Kim TU, Park NC, Chung ST, Nam SJ, HWAHAK KONGHAK, 35(1), 110, 1997
  8. Kim KS, Jeon BJ, Jung IH, Korean J. Chem. Eng., 17(1), 33, 2000
  9. Sohn WI, Koo JK, Oh SJ, Korean J. Chem. Eng., 17(6), 678, 2000
  10. Kersten H, Steffen H, Behnke JF, Surf. Coat. Technol., 87, 762, 1996
  11. Chen R, Gorelik V, Silverstein MS, J. Appl. Polym. Sci., 56(5), 615, 1995
  12. Lucovsky G, Kim SS, J. Vac. Sci. Technol. B, 8(4), 822, 1990
  13. Tsubokawa N, Satoh M, J. Appl. Polym. Sci., 65(11), 2165, 1997
  14. Owens DK, J. Appl. Polym. Sci., 13, 1741, 1969
  15. Agositino R, Cramarossa F, J. Appl. Phys., 54, 1284, 1983
  16. Fowkes FM, Mccarthy DC, Mostafa MA, J. Colloid Interface Sci., 78, 200, 1980
  17. Wenzel RW, Ind. Eng. Chem., 28, 988, 1936