Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.41, No.1, 15-19, 2003
XPS와 AFM에 의한 올리고펩타이드의 자기 집합화 단분자막 분석
Analysis of Oligopeptide Self-Assembled Monolayer Using XPS and AFM
금속 기판 위에 유기 박막을 형성하는 방법 중에서 티올기와 Au와의 결합을 이용한 자기집합화에 관한 연구가 활발히 진행되고 있다. 포르피린 유도체와 강하게 결합하는 티올기를 가지는 올리고펩타이드 PSP1과 PSP2를 합성하여 MOPS 완충용액에서 금표면에 자기집합화 단분자막(self-assembled monolayer, SAM)을 형성시켜 X-ray photoelectron spectroscopy(XPS)와 atomic force microscopy(AFM)을 이용하여 분석하였다. 그 결과 PSP2의 경우가 PSP1의 경우보다 Au 표면에서 SAM이 더욱 더 잘 형성되고 있음을 알 수 있었고 MOPS 완충용액에 존재하는 황 이온의 영향도 알 수 있었다. 이 결과는 구성단위로부터 이론적으로 계산한 SAM막의 steric energy 값의 차이에서 유추한 결론과 일치하였다.
Recently, the self-assembled monolayer(SAM) of thiols on noble metals has been studied intensively. Oligopeptides such as PSP1(Tyr-Ala-Gly-Tyr-Cys) and PSP2(His-Ala-Ser-Tyr-Ser-Cys) with thiol group, which interact strongly with a typical cationic porphyrin derivative, are synthesized. Peptides adsorption from the liquid phase on Au has been studied using X-ray photoelectron spectroscopy(XPS) and AFM image. XPS provides further evidence that the primary adsorbate species is bonded to Au through the sulfur atom. By the analysis of XPS spectra and AFM image, it is found that PSP2 is self-assembled better than PSP1 and the sulfur ion in MOPS buffer solution has an effect on the self-assembling performance. This result is coincident with the calculation result of steric energies of Au-Peptide bonded SAM structure.
[References]
  1. Nuzzo RG, Allara DL, J. Am. Chem. Soc., 105, 4481, 1983
  2. Ulman A, Chem. Rev., 96(4), 1533, 1996
  3. Takiguchi H, Sato K, Ishida T, Abe K, Yase K, Tamada K, Langmuir, 16(4), 1703, 2000
  4. Ogawa H, Takamura T, shimoyama Y, Jpn. J. Appl. Phys., 38, 6019, 1999
  5. Strong L, Whitesides GM, Langmuir, 4(3), 546, 1988
  6. Samant MG, Brown CA, Gordon JG, Langmuir, 7(3), 437, 1991
  7. Whitesides GM, Laibinis PE, Langmuir, 6(1), 87, 1990
  8. Lawrence DS, Jiang T, Levett M, Chem. Rev., 95(6), 2229, 1995
  9. Yamada R, Uosaki K, Denki Kagaku, 65(6), 440, 1997
  10. Whelan CM, Smyth MR, Barnes CJ, Langmuir, 15(1), 116, 1999
  11. Chiang S, Science, 272(5265), 1123, 1996
  12. Poirier GE, Pylant ED, Science, 272(5265), 1145, 1996
  13. Takamura T, Matsushita K, Shimoyama Y, Jpn. J. Appl. Phys., 35, 5831, 1996
  14. Castner DG, Hinds K, Grainger DW, Langmuir, 12(21), 5083, 1996
  15. Laibinis PE, Bain CD, Whitesides GM, J. Phys. Chem., 95, 7017, 1991
  16. Walczak MM, Alves CA, Lamp BD, Porter MD, J. Electroanal. Chem., 396(1-2), 103, 1995
  17. Jager B, Schurmann H, Muller HU, Himmel HJ, Neumann M, Grunze M, Woll C, Z. Phys. Chem., 202, 263, 1997
  18. Biebuyck HA, Bian CD, Whitesides GM, Langmuir, 10(6), 1825, 1994
  19. Atherton E, Gait MJ, Sheppard RC, Willarns BJ, Bioorg. Chem., 351, 1979
  20. Noh J, Hara M, Langmuir, 16(5), 2045, 2000
  21. Carron KT, Hurley LG, J. Phys. Chem.-US, 95(24), 9979, 1991