Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.35, No.1, 8-13, 1997
역유동층 생물막 반응기를 이용한 아파트 오수 처리
Wastewater Treatment of Apartment Using an Inverse Fluidized Bed Biofilm Reactor
역유동층 생물막 반응기를 이용하여 아파트 오수를 처리하였다. 평균 유입 TCOD는 380mg/L, SCOD는 182mg/L였으며, HRT를 바꾸어 주면서 실험하였다. 수리학적 부하량을 0.3kgCOD/m3·day로 높여 주었을 때 SCOD농도는 12.0mg/L에서 44.0mg/L, 미생물 농도는 3272mg/L에서 10556mg/L, 생물막 두께는 40.0μm에서 132.7μm로 두꺼워졌다. 그러나 생물막 건조밀도는 0.060g/mL에서 0.024g/mL로 낮아졌다. 오수에 함유되어 있는 LAS농도는 16.0mg/L에서 26.0mg/L의 범위였으며, 수리학적 부하량 4.5kgCOD/m3·day에서도 LAS는 95%이상이 제거되었다. 반응속도식을 1차로 가정한 유출 SCOD 예측은 실험값과 5%의 상대오차로 잘 일치하였다.
Wastewater of an apartment was treated in an inverse fluidized bed biofilm reactor to investigate the variation of effluent TCOD(influent mean value; 380mg/L) and SCOD(influent mean value; 182mg/L) for various HRT at 22℃. When the hydraulic loading rate was increased from 0.3kgCOD/m3·day to 4.5kgCOD/m3·day, the effluent SCOD, the biomass concentration, and the biofilm thickness increased from 12.0mg/L to 44.0mg/L, from 3272mg/L to 10556mg/L, and from 40.0㎛ to 132.7㎛, respectively. But the biofilm dry density was decreased from 0.060g/mL to 0.024g/mL. The influent concentration of LAS ranged from 16.0mg/L to 26.0mg/L in the wastewater of this apartment. LAS removal efficiency was higher than 95% this system, even at a hydraulic loading rate of 4.5kgCOD/m3·day. Prediction of the effluent SCOD value by using the mathematical model well agreed to the observed values within 5% of error.
[References]
  1. Iwai S, Kitao T, "Wastewater Treatment with Microbial Films," Technomic, USA, 1994
  2. Gorris LMG, Van Deursen JMA, vander Drift C, Vogel GD, Biotechnol. Bioeng., 33, 687, 1989
  3. 김동석, 안갑환, 이민규, 송승구, 한국생물공학회지, 6, 116, 1991
  4. Nikolo LN, Karamanev D, Can. J. Chem. Eng., 65, 214, 1987
  5. Ramsay BR, Wang D, Chavarie C, Rouleau D, Ramsay JA, J. Ferment. Bioeng., 72, 495, 1991
  6. Karamanev D, Nikolo LN, Biotechnol. Bioeng., 31, 295, 1988
  7. Kim DS, Ph.D. Dissertation, Pusan National Univ., Pusan, Korea, 1994
  8. Elmeleh S, Grasmick A, "Mathematical Models for Biological Acrobic Fluidized-Bed Reactors," Elsevier, 1985
  9. Shieh WK, Keenan JD, Adv. Biological Eng. Biotechnol., 33, 141, 1986
  10. Hoehn RC, Ray AD, J. WPCF, 45, 2308, 1973
  11. Lamotta EJ, Ph.D. Dissertation, University of North Carolina at Chapel Hill, 1976
  12. Fogler HS, "Elements of Chemical Reaction Engineering," 2nd ed, PTR Prentice Hall, USA, 1992
  13. 김동석, 최윤찬, 송승구, 대한민국 특허, 93-19912, 1993
  14. Standard Methods for the Examination of Water and Wastewater, 17th ed., APHA, AWWA, WPCF, Washington D.C., 1989
  15. Bailey JE, Ollis DF, "Biochemical Engineering Fundamentals, 2nd ed., McGraw-Hill, 1986
  16. Ro KS, Neething JB, J. WPCF, 62, 903, 1990
  17. Manickam TS, Gaudy AF, J. WPCF, 57, 250, 1985