Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.34, No.6, 706-715, 1996
수소 생산용 SPE 전극촉매의 제조 및 특성화
SPE Electrocatalyst for Hydrogen Production-Its Preparation and Characterization
환원제 침투법으로 Solid Polymer Electrolyte(이하 SPE)에 백금을 담지시켜서 SPE전극촉매(이하 전극촉매)를 제조하고 백금의 담지량 및 형태학적 특성, 전기화학적 특성, 그리고 물 전해조에서의 조전압 특성을 조사하였다. 그 결과, 환원제 농도를 증가시키면서, 백금 담지량이 증가하다 감소하였는데, 환원제 농도 1.0 mol/L일 때 담지량이 가장 많아서 3.56mg/㎠이었고 이때, 가장 두꺼운 촉매층이 형성되었다. 제조한 전극촉매의 전류-전압도에서 수소 흡착 피크로부터 계산한 전기량과 거칠기 인자는 환원제 농도 1.0 mol/L에서 284.92mC, 1356.75로 가장 컸지만, 활성 비표면적은 다소 작아졌다. 한편, 전극촉매의 전류 밀도에 따른 조전압 변화를 실험한 결과, 백금 담지량이 많을수록 조전압이 감소하는 현상을 보였는데, 담지량이 3.56mg/㎠, 전류 밀도 1A/㎠하에서 50℃,80℃일 때, 각각 2.9V, 2.7V를 나타내었다. 이때, 환원제 농도는 1.0mol.L.
SPE electrocatalysts were made by reducing agent penetrating method. Pt loading, morphological, and electrochemical characteristics and cell voltage properties were investigated.
The amount of Pt loading increased upto the reducing agent concentration of 1.0mol/L and then decreased. At that concentration, the amount of Pt loading was the most, 3.56mg/㎠ and Pt layer was the thickest. The largest electricity and roughness factor from cyclic voltammogram were 284.92mC and 1356.75 respectively at the reducing agent concentration 1.0 mol/L. But surface area per unit weight of Pt was somewhat lower. As the amount of Pt loading increased, cell voltage became lower. At the amount of Pt loading 3.56 mg/㎠, current density 1 A/㎠, and temperature 25℃ it was the lowest, 3.0V. As temperature increased, cell voltage became lower. Cell voltages at 50℃, 80℃ were 2.9V, 2.7V respectively under the condition of 3.56 mg/㎠, 1A/㎠. It was at the reducing agent concentration 1.0mol/L.
[References]
  1. Lu PWT, Srinivasan S, J. Appl. Electrochem., 9, 269, 1979
  2. 남석우, 홍성안, 한국에너지공학회지, 3, 10, 1994
  3. Bockris JOM, "Comprehensive Treatise of Electrochemistry," edited by Ralph E. White, Vol. 2, Plenum Press, New York, 1981
  4. Geoffrey Prentice: "Electrochemical Engineering Principles," Prentice-Hall Inc., 1991
  5. 오정훈, "SPE를 이용한 물 전기분해용 전극제조에 관한 연구," 연세대학교 대학원, 석사학위논문, 서울, 1995
  6. Millet P, Durand R, Pineri M, Int. J. Hydrog. Energy, 15, 245, 1990
  7. Appleby AJ, Foulkes FR, "Fuel Cell Handbook," Van Nostrand Reinhold, 1989
  8. 채재근, 오정훈, 강문식, 한학수, 설용건, 조영일, 화학공학의 이론과 응용, 1(21), 725, 1995
  9. Millet P, Alleau T, Durand R, J. Appl. Electrochem., 23, 322, 1993
  10. Takenaka H, Torikai E, Kawami Y, Wakabayashi N, Int. J. Hydrog. Energy, 7, 397, 1982
  11. Xing XK, Eiu CC, Electroanalysis, 3, 111, 1991
  12. Kita H, Fujikawa K, Nakajima H, Electrochim. Acta, 12, 1721, 1984
  13. 이용욱, 김용열, 강현춘, 신석재, 이병철, 강안수, 멤브레인, 5(3), 109, 1995
  14. Aramata A, Kodera T, Masuda M, J. Appl. Electrochem., 18, 577, 1988
  15. Katayama-Aramata A, Nakajima H, Fujikawa K, Kita H, Electrochim. Acta, 28, 777, 1983
  16. Katayama-Aramata A, Ohnishi R, J. Am. Chem. Soc., 105, 658, 1983
  17. David WD, Allen JB, J. Electrochem. Soc., 135, 1977, 1988
  18. Scott K, "Electrochemical Reaction Engineering," Academic Press, Ltd., London, 1991