Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.34, No.6, 700-705, 1996
습식 배연탈황공정에서 국내산 석회석의 용해속도 연구
A Study on Di- ssolution Rates of Domestic Limestones in Wet FGD Processes
습식 배연탈황공정에서 국내산 석회석의 용해속도를 측정하고, 입자크기, 조성 및 입자크기분포가 석회석의 용해반응에 미치는 영향을 연구하였다. 조성이 다른 5종류의 석회석을 각각 325 mesh, 100 mesh의 입자크기로 나누어 회분식 및 연속식으로 실험하였다. 회분식 실험에서는 석회석의 종류에 관계없이 입자크기가 작은 것을 많이 포함하는 325 mesh의 석회석의 용해속도가 가자 빨랐으며, 200 mesh, 100mesh 순으로 나타났다. 또 동일한 입자크기일 경우 석회석의 용해속도는 석회석의 조성에 큰 영향을 받는다. 특히 3% MgO에 의해 순수한 석회석의 경우보다 두 배 정도의 용해속도 상승효과를 나타내었으나, 입자크기가 커질수록 그 영향은 감소하였다. 연속식 실험에서도 회분식 실험에서와 같이 입자 크기가 감소할수록 석회석의 이용도가 높게 나타났다.
The rates of dissolution of domestic limestones in the wet type flue gas desulfurization process were measured and the effects of particle size distribution and composition of limestone through the limestone reaction were studied. Five domestic limestone samples of different size distribution(325, 200 and mesh)were tested in both batch and continuous apparatuses. The limestone dissolution rate data measured in the batch experiment system indicated that limestone dissolution rate can be improved by small limestone particles. Realative ranking of limestone dissolution rate was 325 mesh>200 mesh> 100 mesh. At a fixed size of limestones, the dissolution rates were affected by the compostition of limestone, especially MgO. The rates were improved two times by limestone of 3% MgO than pure limestone. But the compostion effects to the dissolution rates were reduced as increasing the size of the particles. The continuous type experiments also showed that more limestone was dissolved as the size of limestone decreased.
[References]
  1. 김성현, 이형근, 민병무, 최원길, 에너지 R&D, 15, 3, 1993
  2. Frank NW, Miller GA, Reed DA, Environ. Prog., 6, 177, 1987
  3. "환경보전," 한국전력공사, 1994
  4. Morse JW, Berner RA, Am. J. Sci., 272, 840, 1972
  5. Ottmers D, Phillips J, Burklin C, Corbett W, Phillips N, Shelton C, EPA Report No. EPA-650/2-75-006, 1974
  6. Meserole FB, Glover RL, Stewart DA, ACS Symp. Ser., 188, 99, 1982
  7. Chan PK, Rochelle GT, ACS Symp. Ser., 188, 75, 1982
  8. Ellis AR, Chem. Eng. Symp. Ser., 106, 349, 1989
  9. Ukawa N, Takashina T, Shinoda N, Shimizu T, Environ. Prog., 12, 238, 1993
  10. Toprac AJ, Master Thesis, Univ. of Texas at Austin, 1981
  11. Calderbank PH, Moon-Young MB, Chem. Eng. Sci., 16, 39, 1961
  12. 이우석, 석사논문, 건국대학교 화학공학과, 1995
  13. Gage CL, Ph.D. Dissertation, Univ. of Texas at Austin, 1989