Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.34, No.6, 694-699, 1996
MeO/NMD 촉매의 일산화탄소 산화반응성
Activity of MeO/NMD Catalysts for CO Oxidation
고정층 반응기에서 이산화망간, 망간광석, MeO/NMD 복합촉매의 일산화탄소 산화반응성과 활성화에너지를 측정하여 이들의 촉매활성을 검토하였다. 이때 온도는 상온부터 400℃ 범위, 압력은 대기압하에서 실행되었다. 복합촉매는 Pt, Pd, 산화용 촉매 또는 담체로 사용가능함을 알 수 있었다. 망간광석에 소량의 금속산화물(0.5 wt%)이 담지됨에 따라서 일산화탄소 산화력의 증가를 볼 수 있었으며 검토된 금속 중 팔라듐산화물의 효과가 가장 우수함을 알 수 있었다. 담지금속들의 함량이 증가됨에 따라서 활성화에너지가 급격하게 감소하였으며 또한 활성화에너지는 순수한 이산화망간보다 망간광석이 낮음을 알 수 있었다.
The activity of natural manganese dioxide(NMD), electrolytic manganese dioxide(EMD), and metal oxide wt% in a differential plug flow reactor system in a temperature range 300-673K and under atmospheric pressure condition. The MeO/NMD composite catalysts consisted of NMD and metals such as Pt, Pd, Ru, Au, Ag Cu, Zn, CuCr prepared by wet impregnation method and calcination in air. It was found from the experiment that NMD could effectively be utilized as a catalyst as well as a support for CO oxidation. By the impregnation of metal oxides on NMD, the oxidation activity of CO was increased, and palladium oxide showed the highest increased among other metal oxides. The activation energy of MeO/NMD composite catalysts decreased with the increase of MeO content and the activation energy of NMD was lower than that of EMD.
[References]
  1. Crucq A, Frennet A, "Catalysis and Automotive Pollution Control," Elsevier, Amsterdam, 30, 395, 1987
  2. Anderson JR, Boudart M, "Catalysis Science and Technology," Springer Verlag, New York, 5, 124, 1983
  3. Leach BE, "Applied Industrial Catalysis," Academic Press, New York, 1, 20, 1983
  4. Yao YFY, J. Catal., 87, 152, 1984
  5. Yao YFY, Ind. Eng. Chem. Prod. Res. Dev., 19, 293, 1980
  6. Imamura S, Sawada A, Uemura K, Ishida S, J. Catal., 109, 198, 1988
  7. Haruta M, Yamada N, Kobayashi T, Iijima S, J. Catal., 115, 301, 1989
  8. Serre C, Garin F, Belot G, Maire G, J. Catal., 141, 1, 1993
  9. Serre C, Garia F, Belot G, Maire G, J. Catal., 141, 9, 1993
  10. Brittan MI, Bliss H, Walker CH, AIChE J., 16(2), 305, 1970
  11. Severino F, Laine J, Ind. Eng. Chem. Prod. Res. Dev., 22, 396, 1983
  12. Masayoshi K, Hiroaki M, Haruo K, J. Catal., 21, 48, 1971
  13. Masayoshi K, Haruo K, J. Catal., 27, 100, 1972
  14. Masayoshi K, Haruo K, J. Catal., 27, 108, 1972
  15. Gardner AD, Hoflund BG, Upchurch BT, Schryer DR, Kielin EF, Schryer J, J. Catal., 129, 114, 1991
  16. Kunii D, Levenspiel O, "Fluidization Engineering," 2nd Ed., Butterworth-Heinemann, Boston, 15, 1991
  17. Books CS, J. Catal., 8, 272, 1967
  18. Crucq A, Frennet A, "Catalysis and Automotive Pollution Control," Elsevier, Amsterdam, 30, 155, 1987
  19. Park JS, Oh KJ, Park YU, Doh DS, J. KSEE, 17(5), 451, 1995
  20. Anderson JR, Boudart M, "Catalysis Science and Technology," Springer-Verlag, Berlin, 3, 108, 1982
  21. Berlowit PJ, Peden CHF, Goodman DW, J. Phys. Chem., 92, 5213, 1988
  22. Cant NW, Donaldson RA, J. Catal., 70, 320, 1981
  23. Cant NW, Hicks PC, Lennon BS, J. Catal., 54, 372, 1978
  24. Levenspiel O, "Chemical Reaction Engineering," 2nd ed., John Wiley & Sons, Inc., New York, 32, 1972
  25. Zafiris GS, Gorte RJ, J. Catal., 140, 418, 1993
  26. Kiselev VF, Krylov OV, "Adsorption and Catalysis on Trasition Metals and Their Oxides," Springer Verlag, New York, 181, 1989
  27. Imamura S, Tsuji Y, Miyake Y, Ito T, J. Catal., 151, 279, 1995
  28. Boulahouache A, Kons G, Lintz HG, Schulz P, Appl. Catal., 91, 115, 1992