Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.34, No.4, 496-501, 1996
Drop Tube Reactor를 이용한 분류층 석탄가스화 특성 연구
Drop Tube Reactor Studies for the Entrained Flow Coal Gasification
분류층 석탄가스화 반응 특성을 파악하고자 종래의 DTR반응기를 변형하여 가스화 반응온도, 산소/수증기비와 체류시간에 따른 영향을 실험하였다. 반응기는 직경 5cm, 길이 1m 알루미나 tube를 사용하였고, 온도는 1000-1500℃범위에서 수행하였다. 반응온도에 따라 H2/CO비가 증가하였고 H2+CO의 수율은 회융점 범위에서 최대 수율을 보였다. 산소량에 따라 전환율은 증가하나, 가스으이 수율은 증가 후 감소하였으며, 탄종에 따라 최적 산소비는 0.6-0.9의 범위로 나타났다. 수증기 증가는 전환율에 미치는 영향은 적으나, 수성 가스 반응에 의해 H2, CO2의 성분이 증가되었다. 체류시간에 따라 반응기 위치별 생성 가스 조성 변화는 석탄에 따라 다른 형태를 보이며, 석탄의 반응성이 감소함에 따라 체류 시간의 증가가 요구되었다.
The effects of reaction temperature (1000-1500℃), ratios of oxygen/coal, steam/coal, and residence time on coal gasification properties in an entrained flow by means of drop tube reactor(0.05m-i.d. X 1m-high)have been determined. The molar ratio of H2/CO decrease with increasing reaction temperature and(H2 + CO) composition exhibits a maximum value around the ash fusion temperature. With increasing oxygen content, carbon conversion increases and production rate of H2 and CO inccreases initially to a maximum value. The optimum ratio of oxygen/coal is found to be in the range of 0.6-0.9 with different kinds of coal. For the lower reactivities of coal, the more residence time is needed based on the measured carbon convert- sion and gas composition along the reactor height.
[References]
  1. ChrisMaude TT, "Coal Gasification for IGCC Power Generation," IEACR/37 March, 1991
  2. Sinbeck DR, Dickenson RL, Oliver ED, "Coal Gasification Systems: A Guide to Status, Applications & Economics," EPRI Report AP-3109, 1983
  3. Badzioch S, Hawksley GW, Ind. Eng. Chem. Process Des. Dev., 9(4), 521, 1970
  4. Nsakala NY, Essenhigh RH, Walker PL, Combust. Sci. Technol., 16, 153, 1977
  5. Nsakala NY, Patel RL, Lao TC, "Combustion and Gasification Characteristics of Chars from Four Commercially Significant Coal of Different Rank," CE Research Project AP-2601, Final Report for EPRI, 1982
  6. Wen CY, Chaung TZ, Ind. Eng. Chem. Process Des. Dev., 18(4), 684, 1979
  7. Saito M, Sato M, Sadakata M, Fuel, 70(6), 709, 1991
  8. Martin JPC, Nieskens GG, Swan TS, Walker LH, Fuel, 63(2), 205, 1984
  9. Shu-cai G, Hedden K, Bd.35, Hett 7,329, 1982
  10. AbeEiSamed AK, Hampartsoumian E, Farag TM, Williams A, Fuel, 69(8), 1029, 1990
  11. Huffman GP, Huggins FE, Levasseur AA, Chow O, Srinivasachar S, Mehta AK, Fuel, 68(4), 485, 1989
  12. Flaxman RJ, Hallett WLH, Fuel, 66(5), 607, 1987
  13. Artos V, Scaroni AW, Fuel, 72(7), 927, 1993
  14. Azuhata S, Hedman PO, Smoot LD, Fuel, 65(2), 212, 1986
  15. Brown BW, Smoot LD, Hedman PO, Fuel, 65(5), 673, 1986
  16. Smoot LD, Brown BW, Fuel, 66(9), 1249, 1987
  17. Brown BW, Smoot LD, Smith PJ, Hedman PO, AIChE J., 34(3), 435, 1988
  18. Revankar VVS, Gokarn AV, Doraiswarny LK, Ind. Eng. Chem. Res., 26, 1018, 1987