Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.34, No.3, 395-400, 1996
Y-제올라이트계 촉매를 이용한 나프탈렌류의 이소프로필화 반응
Isopropylation of Naphthalenes over Y-zeolite Catalyst
2-methylnaphthalene의 6-위치에 선택적으로 이소프로필기를 도입하기 위한 반응에서 Y-제올라이트계 촉매의 특성을 연구하였다. 촉매에 흡착된 암모니아 승온탈착실험과 반응 후 촉매에 생성된 코크의 승온산화실험에 의하여 촉매의 특성화를 하였다. 알킬화제로 프로필렌을 사용하였고, 이온교환법에 의하여 제조된 촉매를 사용하여 연속흐름식 미세반응기 및 상압에서 실험을 하였다. NaY-제올라이트는 반응 활성이 거의 없었으며, HY-제올라이트는 반응초기 90% 정도의 전환율을 보였으나 반응시간에 따라 급격한 비활성화를 나타냈다. Zn12+, Co2+, Ca2+ 및 Mg2+ 금속이온이 90% 이상 이온교환된 촉매(Zn/NaY, Co/NaY, Ca/NaY 및 Mg/NaY)는 HY 촉매에 비하여 비활성화가 크게 개선되었다. 이것은 반응 후 촉매에 형성된 코크의 TPO분석 결과에서 Zn/NaY에 생성된 코크의 양이 현저히 감소한 결과로 잘 설명할 수 있었다. Zn/Nay 촉매에 소량(1wt% 이하)의 tetraethyl orthosilicate(TEOS)를 증착시키거나 함침시킨 촉매도 비활성화가 약간 개선되었다. 그러나 Zn 등의 양이온 교환이나 TEOS가 처리된 촉매에서 2,6-체로의 선택도 개선은 없었다.
Selective catalytic isopropylation of 2-methylnaphthalene(2-MN) to obtain 2,6-dialky- lnaphthalene over Y-zeolite catalyst was studied in a continuous flow micro reactor under atmospheric pressure. NaY, HY and cation-exchanged Y-zeolite catylysts were characterized by temperature programmed desorption(TPD) with NH3 and the used catalysts by temperature programmed oxidation(TPO) of coke. HY-zeolite showed intially a high activity(about 90% conversion) and then was deactivated rapidly with time on stream. The catalysts ion-exchanged by Zn2+, Co2+, Ca2+ and Mg2+(Zn/NaY, Co/NaY, Ca/NaY and Mg/NaY) offered a remarkably improved stability, whcih was attribute to less amount of coke formed during reaction as shown in TPO results. The stability of Zn/NaY treated by chemical vapor deposition or impregnation of tetraethyl orthosilicate(TEOS) against deactivation was slightly enhanced. However, the selectivity to 2,6-dialkylnaphthalene was not improved by cation-exchange and TEOS treatment of Y-zeolite.
[References]
  1. Song C, Schobert HH, Am. Chem. Soc. Div. Fuel Chem. Prep., 37(2), 524, 1992
  2. Katayama A, Toba M, Takeuchi G, Mizukami F, Niwa S, Mitamura S, J. Chem. Soc.-Chem. Commun., 39, 1991
  3. Cusumano JA, Chemtech., Aug., 482, 1992
  4. Gabelica Z, Nagy JB, Bogart P, Debras G, Chem. Lett., 1059, 1984
  5. Hegedus PL, "Catalysis Design," Wiley, New York, p. 177, 1987
  6. Meyers BL, Fleisch TH, Ray GJ, Miller JT, Hall JB, J. Catal., 110, 82, 1988
  7. McLellan GD, Howe RF, Bibby DM, "Methane Conversion," Elsevier, Amsterdam, p. 633, 1988
  8. Bibby DM, Howe RF, McLellan GD, Appl. Catal. A: Gen., 93, 1, 1992
  9. Niwa M, Kato S, Hattori T, Murakami Y, J. Chem. Soc.-Faraday Trans., 80, 3135, 1984
  10. Niwa M, Kato S, Hattori T, Murakami Y, J. Phys. Chem., 90, 6233, 1986
  11. Hibino T, Niwa M, Murakami Y, J. Catal., 128, 511, 1991