Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.34, No.2, 230-236, 1996
표면온도가 일정한 5×5 관다발 내 층류의 열수력 특성에 관한 연구
Study on the Thermal Hydraulic Characteristics for Laminar Flow in 5×5 Tube Bundles with a Uniform Surface Temperature
표면온도가 일정하게 유지된 25개의 관을 포함하는 사각형 동체 내 수력적으로 확립된 층류의 fㆍRe와 Nu로 표현되는 압력손실계수와 열전달계수를 유한차분법을 사용하여 계산하였다. 본 연구에서는 관의 직경이 일정한 경우 관들의 간격이 압력손실계수와 열전달계수에 미치는 영향을 조사하였다. 관의 직경이 일정한 경우 압력손실계수는 관의 간격이 증가함에 따라 증가하며, 관이 동체에 접근함에 따라 다시 감소한다. 관의 간격이 작은 경우 입구부분의 열전달계수를 예측하는 Leveque의 점근식은 단지 Graetz 상수가 매우 큰 범위에서 사용할 수 있다. 이 경우에 log Nu vs. log Gz 도표에서 입구부분 열전달계수의 기울기는 부분적으로 1/3보다 크다. 관의 간격이 열전달현상에 미치는 영향은 특히 관의 간격이 작은 경우에 매우 크다. 관의 간격이 작은 관다발 내 완전 확립된 유체의 경우 열전달계수는 관의 간격이 큰 경우에 비하여 10배정도 낮은 값을 가진다.
Pressure drop and heat transfer characteristics, in the form of fㆍRe and Nu respectively, of hydrodynami-cally developed laminar flow through a square channel containing a bundle of 25 tubes with a uniform surface tempera-ture are studied by solving the momentum and energy balance equations in finite difference forms, using a forward marching implicit finite difference method. In this work, the influences of the tube pitch on the friction factor and the Nusselt number of the 5×5 tube bundles with a constant tube diameter are investigated. At a fixed tube diameter the value of fㆍRe increases with increasing the tube pitch and then decreases as the tubes approach the shell well. Leveque type asymptotic solutions for predicting the heat transfer coefficient for thermal entrance region are valid only in the range of very large Graetz number, if the tube pitch is very small. In this case the slope of the curves in log Nu vs. log Gz diagram is partly greater than 1/3. The impact of the tube pitch on the heat transfer rate is great in case of the small tube pitch. The Nusselt number of the smaller tube pitch for the fully developed flow is about 10 times as small as that for the larger tube pitch.
[References]
  1. Johannsen K, "Longitudinal Flow over Tube Bundles, Low Reynolds Number Flow Heat Exchangers," Ed. Kakac, S., Shah, R.K. and Bergles, A.E., Hemisphere, New York, 1983
  2. Rehme K, "Convective Heat Trasfer over Rod Bundles," Handbook of Single-Phase Convective Heat Transfer, ed. Kakac, S., Shah, R.K. and Aung, W., 1987
  3. Miyatake O, Iwashita H, Int. Chem. Eng., 28(3), 461, 1988
  4. Miyatake O, Iwashita H, Int. J. Heat Mass Transf., 33(3), 417, 1990
  5. Miyatake O, Iwashita H, Int. J. Heat Mass Transf., 34(1), 322, 1991
  6. Kim WK, Martin H, Gnielinski V, Chem. Eng. Process., 32(2), 99, 1993
  7. Kim WK, "Waermeuebergang und Durckverlust in Laengsdurchstroemten Rohrbuendelwaermeuebertragern," Dr.-Ing. Thesis, Uni. Karlsruhe, Germany, VDI-Verlag, GmbH, Duesseldorf, 1994
  8. Benodekar RW, Date AW, Int. J. Heat Mass Transf., 21(7), 935, 1978
  9. Schluender EU, Chem. Eng. Sci., 32(8), 845, 1977
  10. Shah RK, London AL, "Laminar Flow Forced Convection in Ducts, A Source Book for Compact Heat Exchanger Analytical Data, Advances in Heat Transfer," Academic Press, New York, 1978