Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.34, No.2, 171-177, 1996
고분자 전해질형 연료전지의 막 내에서 수분이동에 대한 모델링
Modeling for Water Transport in the Membrane of Polymer Electrolyte Membrane Fuel Cell
고분자 전해질형 연료전지에서 수분 및 반응기체가 막과 전극 내에서 정상상태로 흐를 때 1차원 확산모델식으로부터 막 내의 수분분포와 막 저항값을 계산하였다. 막 내의 수분함량은 anode에서 cathode로 갈수록 증가하였으며, 전류밀도가 증가할수록 anode와 cathode사이의 수분의 농도구배차는 크게 나타났다. 또한 전해질막의 두께가 얇을수록 그리고 전지의 작동온도가 높을수록 수분의 함량이 증가하였고 막 저항값은 감소하였다. 모델식으로부터 얻은 성능곡선은 막 저항 분국 영역에서 실험에 의한 성능곡선과 근사하게 일치하였다.
When water and reactant gases keep steady-state flow in the membrane and electrode of polymer electro-lyte membrane fuel cell, water distribution and membrane resistance in the membrane were calculated from one dimensional diffusion model equations. Water content in the membrane increased from anode to cathode and the difference of the water concentration gradient between anode and cathode increased at higher current density. The thinner membrane and the higher operating temperature, the water concentration increased and the membrane resist-ance decreased. The performance plot calculated by mathematical modeling approximately agreed with the performance plot measured by experiments in the range of membrane resistance overpotential.
[References]
  1. Bockris JOM, Srinivasan S, "Fuel Cells: Their Electrode Chemistry," McGraw-Hill Inc., N.Y., 1969
  2. Lemons RA, J. Power Sources, 29, 251, 1990
  3. Mcdougall A, "Fuel Cell," John Wiley & Sons, N.Y., 1976
  4. Srinivasan S, Enayetullah MA, Somasunram S, Swan DH, Manko D, Koch H, Appleby AJ, Proc. Intersoc. Energy Convers. Eng. Conf., pp. 1623-1629, 1989
  5. Carl AR, U.S. Patent, 4,826,742, 1989
  6. Bernardi DM, Proc. Electrochem. Soc., 89(14), 51, 1989
  7. Verbrugge M, Hill R, J. Phys. Chem., 92, 6778, 1988
  8. Fales JL, Vanderbrgh NE, The Electrochemical Society Softbound Proceedings Seires, PV 86-13, p. 179, N.J., 1986
  9. Fuller T, Newman J, The Electrochemical Society Softbound Proceedings Series, PV 89-14, p. 25, N.J., 1984
  10. Bernardi D, J. Electrochem. Soc., 138(8), 51, 1991
  11. Springer TE, Zawodzinski TA, Gottesfed S, J. Electrochem. Soc., 138(8), 2334, 1991
  12. Nguyen T, James CH, Nicholas EV, Proc. Electrochem. Soc., 89(14), 39, 1989
  13. Peter CR, Nicholas EV, J. Membr. Sci., 32, 313, 1987
  14. Zawodzinski TA, Springer TE, Davey J, Jestel G, Lopez C, Valerio J, Gottesfeld S, J. Electrochem. Soc., 140, 1981, 1993
  15. Zawodzinski TA, Derouin C, Radzinski S, Sherman RJ, Smith VT, Springer TE, Gottesfeld S, J. Electrochem. Soc., 140, 1041, 1993
  16. Perry RH, Green D, "Perry's Chemical Engineer's Handbook," McGraw-Hill Inc., N.Y., 1984
  17. "Handbook of Chemistry and Physics," 62nd ed., CRC Press, Boca Raton, 1981
  18. Derouin C, Pafford J, The Electrochemical Society Extended Abstract, p. 903, C.A., 1989
  19. 최경환, "고분자 전해질형 연료전지에서 Hot Pressing 조건의 영향과 수분 이동에 대한 모델링," 공학석사학위논문, 연세대학교, 1994