Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.34, No.2, 143-148, 1996
원거리 플라즈마 화학증착을 이용한 저온 이산화규소박막의 제조
Remote Plasma Chemical Vapor Deposition(RPCVD) of Low Temperature Silicon Oxide
저온공정 개발을 위해 원거리 플라즈마 화학증착법(RPCVD)을 사용하여 산화막을 제조하였고 공정변수인 증착온도, 플라즈마 전력과 반응기체 분압 등의 영향을 고찰하였다. 증착속도는 증착온도보다는 플라즈마 전력에 의존하였다. 플라즈마 전력 증가에 따라 증착속도가 증가함과 동시에 막 내에 수소결합물의 혼입으로 막질의 저하를 가져왔다. 증착온도의 증가는 막의 다공성을 줄여주는 것으로 나타났다. 반응기체의 농도 증가는 입자가 형성되는 기상반응를 유발하여 증착속도가 감소되고 막의 식각율과 표면 거칠기가 증가하여 산화막 물성의 저하를 가져왔다. 낮은 N2O/SiH4 유량비에서는 산소원의 부족으로 Si-rich한 막이 형성된 반면 유량비 4이상에서는 기상반응에도 불구하고 충분한 산소원의 공급으로 O/Si=1.9로 포화되는 경향을 나타내었다.
Remote plasma chemical vapor deposition(RPCVD) was used for the deposition of silicon oxide film and the effect of the operating variables, such as plasma power, deposition temperature, and the partial pressure of the reactants was investigated. The deposition rate was dependent on the plasma power rather than on the deposition temperature. With the plasma power increased, the deposition rate and the incorporation of the hydrogen related bonding were increased, which degraded the film properties. The increase of the deposition temperature reduced the film porosity. The increase of the partial pressure of reactants led to the powder formation from the gas phase reaction which lowered the film growth rate but increased film porosity and surface roughness were significantly increased. Si-rich film was deposited when N2O/SiH4 ratio was smaller than 4 and the stoichiometry of silicon oxide film did not vary from O/Si=1.9 with N2O/SiH4 ratio greater than 4.
[References]
  1. Chung JE, Jeng MC, Moon JE, Ko PK, Hu C, IEEE Trans. Electron Devices, ED37(7), 165, 1990
  2. Chen KL, Saller SA, Groves IA, Scott DB, IEEE Trans. Electron Devices, ED32(2), 386, 1985
  3. 이시우, 이전, CVD Handbook, 반도 출판사, 1993
  4. Adams AC, Alexander FB, Capio CD, Smith TE, J. Electrochem. Soc., 128, 1545, 1981
  5. Tauri Y, Hidaka J, Aota K, Jpn. J. Appl. Phys., 23, L827, 1981
  6. Hu YZ, Joseph J, Irene EA, Appl. Phys. Lett., 59(11), 1353, 1991
  7. Adams AC, Solid State Technol., 26, 135, 1983
  8. Tsu DV, Lucovsky G, Mat. Res. Soc. Symp., 77, 595, 1987
  9. Lucovsky G, Tsu DV, J. Vac. Sci. Technol. A, 5(4), 221, 1987
  10. Batey J, Tierney E, J. Appl. Phys., 60, 3136, 1986
  11. Ing SW, Davern W, J. Electrochem. Soc., 112, 285, 1965
  12. Meiners LC, J. Vac. Sci. Technol., 21, 655, 1982
  13. Kern W, Ban VS, Thin Film Processes, Academic Press, N.Y., p. 258, 1978
  14. Chapple-Sokol JD, Giunta CJ, Gordon RG, J. Electrochem. Soc., 136(10), 2993, 1989
  15. Lucovsky G, Kim SS, Fitch JT, J. Vac. Sci. Technol. B, 8(4), 822, 1990
  16. Cleland TA, Hess DW, J. Electrochem. Soc., 136(10), 3103, 1989
  17. Buss RJ, Ho P, Breiland WG, Coltrin MZ, J. Appl. Phys., 63, 2808, 1988
  18. Lucovsky G, Richard PD, Tsu DV, Lin SY, Markunas RJ, J. Vac. Sci. Technol. A, 4(3), 681, 1986
  19. Lucovsky G, Fitch JT, Tsu DV, Kim SS, J. Vac. Sci. Technol. A, 7(3), 1136, 1989
  20. Okayama K, Huang D, Seinfield JH, Tani N, Kousaka Y, Chem. Eng. Sci., 46(7), 1545, 1991
  21. Reinberg AR, J. Electronic Mater., 8, 345, 1979
  22. Cobianu C, Pavelescu C, J. Electrochem. Soc., 130, 1888, 1983
  23. Baliga BJ, Ghandhi SK, J. Appl. Phys., 44, 990, 1973
  24. Middlelock J, Klinklhamer AJ, 5th International Conference of CVD, p. 19, 1975
  25. Taft EA, J. Electrochem. Soc., 126, 1728, 1979
  26. Smith DL, Alimonda AS, J. Electrochem. Soc., 140(5), 1496, 1993
  27. Park Y, Rhee S, Thin Solid Films, in press, 1996
  28. Lee SW, Chem. Ind. Technol., 11(5), 315, 1993
  29. Longeway PA, Estes RD, Weakliem HA, J. Phys. Chem., 88, 73, 1984
  30. Kang J, Park Y, Rhee S, J. Lor. Vac. Soc., 3(4), 426, 1994