Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.34, No.1, 127-134, 1996
탑형 생물반응기 기포탑과 삼상유동층에서의 회분식 Xanthan생산
Batchwise Xanthan Production in Tower Bioreactors-Bubble Column and Three Phase Fluidized Bed
기포탑(0.085m3) 및 삼상유동층(0.114m3) 탑형반응기를 호기성 박테리아 Xanthomonas campestris에 의한 세포의 다당류 xanthan의 회분식 생산에 사용하였다. 직경 8mm 유리 유동입자는 고점도 배양액에서도 공기 기포를 분쇄하여, 삼상유동층은 기포탑에 비해 약 7배 높은 기-액 물질전달계수를 나타내었다. 반면에 회분식 발효 중 상당한 배양액 유효점도의 증가로 인한 층팽창 때문에, 삼성유동층 반응기의 운전은 제한된 xanthan 농도 범위 내에서 가능하였다. 높은 산소흡수효율(kg-O2/kWh) 및 에너지투입속도 그리고 운전의 복잡성을 고려할 때, 삼성유동층 생물반응기는 발효 중 일정한 배양액 유변학적 특성을 보이는 연속생산공정에 적합할 것이다.
Tower reactors of a bubble column(0.085m3) and a three phase fluidized bed(TPFB, 0.114m3) were used for the batch production of exocellular polysaccharide xanthan with the aerobic bacteria Xanthomonas campestris. Even at high viscosities the fluidized particles of 8.0mm glass beads disintegrated the air bubbles, which led to about seven times higher gas-liquid mass transfer coefficient in the TPFB compared to that in the bubble column. On the other hand, the TPFB reactor could be operated in a limited range of xanthan concentrations due to the large bed expansion caused by a considerable increase in the effective viscosity of culture broths during a batch fermentation. Taking into account the high oxygen sorption efficiency(kg-O2/kWh), the high energy input rate and the operation complexity, the TPFB bioreactor is expected to be appropriate for the continuous production of xanthan which shows constant rheological properties of culture broths at a steady state.
[References]
  1. Margaritis A, Pace GW, Comprehensive Biotechnology (M. Moo-Young ed.), Vol. 3, 1005, Pergamon, Toronto, 1985
  2. Herbst H, Schumpe A, Deckwer WD, Chem. Eng. Technol., 15, 425, 1992
  3. Weiss RM, Ollis DF, Biotechnol. Bioeng., 22, 859, 1980
  4. Pinches A, Pallent LJ, Biotechnol. Bioeng., 28, 1484, 1986
  5. Peters HU, Herbst H, Suh IS, Schumpe A, Deckwer WD, Biomedical and Biotechnological Advances in Industrial Polysaccharides (Crescenzi et al. ed.). pp. 275-281, Gordon and Breach, New York, 1989
  6. Peters HU, Herbst H, Hesselink PGM, Lunsdorf H, Schumpe A, Deckwer WD, Biotechnol. Bioeng., 34, 1393, 1989
  7. Suh IS, Herbst H, Schumpe A, Deckwer WD, Biotechnol. Lett., 12, 201, 1990
  8. Peters HU, Suh IS, Schumpe A, Deckwer WD, Can. J. Chem. Eng., 70, 742, 1992
  9. Suh IS, Schumpe A, Deckwer WD, Biotechnol. Bioeng., 39, 85, 1992
  10. Peters HU, Suh IS, Schumpe A, Deckwer WD, Biotechnol. Lett., 15, 565, 1993
  11. Deckwer WD, Schumpe A, Suh IS, Ger. Offen. DE 3834443 A1, 1988
  12. Herbst H, Suh IS, Peters HU, Schumpe A, Deckwer WD, DECHEMA Biotechnology Conferences, vol. 3, pp. 495-498, VCH, Weinheim, 1989
  13. Kim SD, Baker CGJ, Bergougnou MA, Can. J. Chem. Eng., 50, 695, 1972
  14. Herbst H, Peters HU, Suh IS, Schumpe A, Deckwer WD, Biotechnol. Tech., 2, 101, 1988
  15. Schumpe A, Quicker G, Deckwer WD, Adv. Biochem. Eng., 4, 1, 1982
  16. Suh IS, Schumpe A, Deckwer WD, Kulicke WM, Can. J. Chem. Eng., 69, 506, 1991
  17. Schumpe A, Deckwer WD, Bioprocess Eng., 2, 79, 1987
  18. Schumpe A, Deckwer WD, Nigam KDP, Can. J. Chem. Eng., 67, 873, 1989
  19. Nguyen-Tien K, Patwari AN, Schumpe A, Deckwer WD, AIChE J., 31, 194, 1985
  20. Clift R, Grace JR, Weber Me, "Bubbles, Drops, and Particles," Academic Press, New York, 1978
  21. Suh IS, Schumpe A, Chem. Ing. Tech., 64, 560, 1992
  22. Zaidi A, Ghosh P, Schumpe A, Deckwer WD, Appl. Microbiol. Biotechnol., 35, 330, 1991