Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.34, No.1, 99-104, 1996
초임계 프로판을 이용한 석유정제 감압잔사유로부터 탄소재료용 전구체 핏치의 분리
Separation of Precursor-Pitch for Carbon Applications from Petroleum Vacuum Residuum Using Supercritical Propane(C3H8)
석유정제 감압증류 잔사유로부터 탄소재료용 전구체 핏치를 얻기 위하여 초임계 프로판을 이용하여 연속식 추출실험을 수행한 후 추출조건(압력, 온도) 변화에 따른 추출 연료유의 수율 및 잔류 핏치의 물성을 평가해 보았다. 탈아스팔텐 상태의 추출 연료유 수율은 시스템 압력 증가에 따른 초임계 용젱의 밀도 증가 영향을 받아 점차로 증가하였다. 그러나 프로판 용젱의 임계온도(370K) 근처 추출조건들에서는 잔류된 핏치의 수율이나 그 물성에 있어 별 다른 차이를 관찰할 수 없었다. 한편 프로판 용젱의 임계온도 영역 및 10.3MPa 이상의 초임계 조건에서는 asphaltene(pentane 불용분) 함량은 높은 반면 toluene 불용분은 거의 없을 뿐만 아니라 401-424K 정도의 연화점을 지닌 탄소섬유용 전구체 핏치로 만족할 만한 물성의 잔류 핏치를 얻을 수 있었다.
The continuous supercritical propane(C3H8) separations of residual precursor-pitches for carbon applica-tions from a petroleum vacuum-distillation residuum were performed under different conditions to ascertain the effects of system pressure and temperature on the yields of extracted oil and the properties of residual pitches. Deasphalted oil-extraction yields were increased as the system pressure was increased corresponding to the increased density of supercritical propane used as a solvent. The non-discriminatory yields and properties of residual precursor-pitches were observed at the extractions performed in the vicinity of the critical temperature(370K) of propane. The residual pitches obtained near the critical temperature of propane and over 10.3MPa showed appropriate qualities, representing high asphaltene content, free toluene insolubles and the softening point of 401-424K, for the precursor-pitch of carbon fibers.
[References]
  1. 백일현, 석유와 윤활, 11, 95, 1994
  2. Noguchi T, "Heavy Oil Processing Handbook," Research Association for Residual Oil Processing (RARAP), Japan, 1991
  3. 이득기, 이인철, 석유와 윤활, 9, 68, 1992
  4. Newcomer RM, Soltau RC, Oil Gas J., 80, 108, 1982
  5. Gearhart JA, Hydrocarb. Process., 55, 150, 1980
  6. Newcomer RM, Hydrocarb. Process., 80, 189, 1982
  7. Gearbart JA, Garwin L, Hydrocarb. Process., 55, 125, 1976
  8. Marsh H, "Introduction to Carbon Science," Butterworths, London, 1989
  9. Gearhart JA, Nelson SR, "ROSE Process Offers Energy Saving for Solvent Extraction," Fifth Annual Industrial Energy, Conservation Technology Conference, 823, 1983
  10. Ely JF, Baker JK, "A Review of Supercritical Fluid Extraction," NBS TN-1070, December, 1983
  11. McHugh MA, Krukonis VJ, "Supercritical Fluid Extraction-Principles and Practice," Butterworth-Heinemann, Boston, 1994
  12. Wilson RE, Keith PC, Hoylett RE, Ind. Eng. Chem., 28, 1065, 1936
  13. Hutchenson KW, Roebers JR, Thies MC, Carbon, 29, 215, 1991
  14. Hutchenson KW, Roebers JR, Theis MC, J. Supercrit. Fluids, 3, 4, 1990
  15. Shishido M, Yamada S, Arai K, Saito S, Fuel, 22, 1009, 1990
  16. Kershaw JR, Smart PJ, Carbon, 32, 85, 1994
  17. Kim CJ, Ryu SK, Rhee BS, HWAHAK KONGHAK, 31(5), 577, 1993
  18. Iwata K, Fuel Process. Technol., 3, 25, 1980
  19. Kato T, Fuel Soc. Jpn., 55, 12, 1976
  20. Annual Book of ASTM Standards, 5, 390, 1994
  21. Deo MD, Hwang J, Hanson FV, Fuel, 71, 1519, 1992
  22. Hwang J, Kim CH, Lim GB, Korean J. Chem. Eng., 12(2), 244, 1995
  23. Park SJ, Kwak TY, Mansoori GA, Int. J. Therm. Sci., 8, 449, 1987
  24. Park SJ, Mansoori GA, Energy Sources J., 10, 117, 1988